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Abstract
1.	 Microclimate models predict temperature and other meteorological variables at 

scales relevant to individual organisms. The broad application of microclimate 
models requires gridded macroclimatic variables as input. However, the spatial 
and temporal resolution of such inputs can be a limiting factor on the accu-
racy of microclimate predictions. Due to its fine resolution and accuracy, the 
ERA5 reanalysis dataset is emerging as the favoured resource for global his-
torical weather and climate data and has great potential for aiding microclimate 
modelling.

2.	 Here we describe mcera5, an R language package that provides convenient ac-
cess to, and wrangling of, the ERA5 climate datasets for use in microclimate 
models. Through this package, we provide functions to query ERA5 data for 
desired spatial and temporal extents, to correct for spatial biases and process 
outputs for easy interpretation by ecologists, thereby allowing faster and more 
accurate microclimate predictions.

3.	 By validating with empirical observations from multiple biomes globally, we dem-
onstrate that the use of ERA5 climate forcing via mcera5 improves the prediction 
accuracy of soil moisture, air temperature and relative humidity as compared to 
forcing with other globally available data and offers comparable performance 
when predicting soil temperatures.

4.	 Through the provision of fine-resolution ERA5 data, the mcera5 package fits into 
an ecosystem of tools for modelling microclimate in a spatio-temporally explicit 
fashion, advancing our ability to efficiently predict microclimate for any place 
on Earth for the past, present or future. The package also provides convenient 
access to ERA5 datasets for a range of other applications.
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1  |  INTRODUC TION

Numerous studies seek to understand relationships between or-
ganisms and climate, but readily available climate datasets are often 
a poor surrogate for the climatic conditions experienced by plants 
and animals in nature (Lembrechts et al., 2019). For the systems and 
processes of interest to ecologists, environmental data on radiation, 
wind, air temperature or other climatic variables are often not only at 
inappropriately coarse spatial and temporal resolution, but also pro-
vided in formats and units that are not of immediate utility to non-
meteorologists. Although mechanistic and statistical approaches 
exist for downscaling coarse resolution environmental data to pre-
dict temperatures at biologically relevant spatial and temporal scales 
(Bramer et al., 2018; Potter et al., 2013), such methods are limited by 
the quality and extent of gridded climate or weather data provided 
as input.

To date, gridded weather data such as the National Centres for 
Environmental Prediction (NCEP) dataset produced by the National 
Oceanic and Atmospheric Administration have proven an eas-
ily accessible resource (Kalnay et al.,  1996). However, most NCEP 
products are provided at a temporal resolution of 6 hr and a spatial 
resolution of 2.5 decimal degrees and thus offer only a coarse de-
scription of a region or temporal window. Methods exist to down-
scale the NCEP data (Kearney et al., 2020), but with the launch of 
ERA5, this new climate product suite will likely supersede NCEP as 
the primary data source for researchers wishing to calculate micro-
climate temperatures anywhere on Earth (Figure 1).

ERA5 (ECMWF Re-Analysis 5, Hersbach et al., 2020) is a freely 
accessible comprehensive climate dataset provided by the European 
Centre for Medium-Range Weather Forecasts. It is a reanaly-
sis product stemming from the assimilation of numerical weather 
model forecasts with empirical station observations, thereby of-
fering an appealing balance of low data latency and high accuracy 

based on near real-time model improvement. ERA5 data are avail-
able at a temporal resolution of 1 hr, a spatial resolution of 0.25° 
and span from 1950 to 5 days from present (note: 1950–1978 data 
are currently classed as preliminary). Vertically, the data encompass 
predictions at several soil depths as well as from Earth's ‘surface’ 
(2 m above the ground) through 37 pressure levels up into the at-
mosphere. Uncertainty estimates for climate variables are provided 
in 3-hr intervals, drawn from variation within a 10-member ensem-
ble of predictions. Monthly averages are also available, yet it is the 
hourly predictions that provide unprecedented climate forcing data 
for biological applications.

ERA5 data can be acquired manually from the Climate Data 
Store (CDS; https://cds.clima​te.coper​nicus.eu/) or programmatically 
using the corresponding application programming interface (API). 
This API is accessed via Python (van Rossum & Drake, 2002), which 
may pose a challenge for some in the ecological research community, 
for whom the R programming environment (R Core Team, 2021) has 
rapidly established itself as the primary tool used for data analysis 
(Lai et al., 2019). The ecmwfr package (Hufkens et al., 2019) provides 
tools in R to securely log in to the CDS using user credentials and 
then build and execute requests for downloading data to one's ma-
chine locally. However, navigating the myriad of available datasets, 
and the netCDF format of downloaded files, may act as a barrier 
to researchers less familiar with meteorological data or accustomed 
to tabular formats. For climate downscaling, it is also necessary to 
coerce variables to desired spatial and temporal units, apply correc-
tion biases and combine variables to compute those needed for mi-
croclimate modelling. Thus, there is a need for automated tools that 
perform the necessary selection and pre-processing of ERA5 data 
for use in existing microclimate models or other ecological applica-
tions. Here we describe the mcera5 package as a toolkit for acquir-
ing, transforming and formatting the ERA5 forcing data pertinent 
to microclimate modelling, to predict accurate microclimate almost 

F I G U R E  1  The spatial resolution of 
NOAA NCEP (a) and ERA5 (b) gridded 
climate data across the extent of the 
British Isles. Note: both datasets are 
produced with global extents.

https://cds.climate.copernicus.eu/
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automatically. We then integrate it with a set of existing microcli-
mate models and demonstrate corresponding improvements in pre-
diction accuracy.

2  |  THE m c e r a5  PACK AGE

The aim of the mcera5 package is to provide a set of tools to down-
load variables of relevance to microclimate modelling, then process 
and format these data to provide users with fine-resolution climate 
forcing data (Figure 2). The package is designed to be interoperable 
with a series of other R packages including NicheMapR (Kearney 
& Porter,  2017), microclima (Maclean et al.,  2019) and microclimc 
(Maclean & Klinges,  2021), which all feature models for mecha-
nistically predicting local microclimate when provided data on cli-
mate forcing, vegetation and soil characteristics of a site or region. 
NicheMapR provides a vertical-flux air and soil microclimate model 
paired with energy and mass exchange models for ectothermic and 
endothermic organisms; microclima calculates the effect of physi-
cal forces on near-ground temperature at a spatial point, and when 
provided empirical parameters, then applies these relationships 
across a grid to spatially map microclimate; microclimc draws upon 
first principles of physics to represent heat exchange above, below 
and within canopies of a variety of vegetated habitats. Collectively, 
these packages form complementary approaches for predicting 
spatio-temporally explicit microclimate variables such as tempera-
ture, relative humidity and soil moisture. The integration of mcera5 
with these packages provides convenient use of ERA5 data for pre-
dicting local microclimate, but mcera5 also functions as a stand-alone 
portal to curated ERA5 climate and weather data for the past or 

near-present and across wide spatial extents. The code and vignette 
for the mcera5 package is hosted on GitHub at https://github.com/
dklin​ges9/mcera5 and can be installed in R using remotes::install_
github(“dklinges9/mcera5”). Some functions in the mcera5 package 
rely on several other underlying R packages: plyr (Wickham, 2020), 
dplyr (Wickham et al.,  2021), magrittr (Bache et al.,  2020), ecmwfr 
(Hufkens et al., 2019), ncdf4 (Pierce, 2021), abind (Heiberger, 2016), 
lubridate (Spinu et al.,  2018), tidync (Sumner,  2021) and microclima 
(Maclean et al., 2019). These packages are thus specified as depend-
encies and automatically installed along with mcera5 if not already 
present on a user's machine. Here, we describe the workflow in R 
and provide a worked example as an online supplemental file (also 
available as a vignette in the R package).

3  |  WORKFLOW

3.1  |  Building a request and downloading data

Note: at times, when the CDS server is busy, there can be an overhead 
time of several hours for downloading data from the CDS, even for small 
amounts of data (<10 MB). Such overhead time is independent of mcera5, 
yet can be reduced according to the spatial/temporal dimensions of the 
query. Generally, querying temporal durations >1 year causes a delay, 
while query of wide spatial extents can occur rapidly. It is therefore most 
efficient to download time-series data in temporal chunks (e.g. monthly 
basis) each specifying a region encompassing multiple points of inter-
est. We also recommend users track current usage of the CDS at https://
cds.clima​te.coper​nicus.eu/live/queue and ECMWF news at https://confl​
uence.ecmwf.int/#all-updates.

F I G U R E  2  Workflow showing how 
mcera5 fits into a wider process of data 
acquisition, processing and microclimate 
modelling. ERA5 data are stored on the 
CDS server, and after a user has registered 
their credentials via wf_set_key, they can 
efficiently structure a data query using 
the mcera5 function build_era5_request 
and then submit that query using request_
era5. Upon successful download of the 
corresponding file(s), meteorological 
predictions for a given spatial/temporal 
domain within the data can be extracted 
as a data frame using extract_clim and 
extract_precip. These data frames are 
immediately ready for use with several 
microclimate modelling R packages, 
including NicheMapR, microclima and 
microclimc.

https://github.com/dklinges9/mcera5
https://github.com/dklinges9/mcera5
https://cds.climate.copernicus.eu/live/queue
https://cds.climate.copernicus.eu/live/queue
https://confluence.ecmwf.int/#all-updates
https://confluence.ecmwf.int/#all-updates
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Due to the size of datasets and the speed at which they can be 
accessed through the CDS, acquisition and processing cannot be per-
formed in tandem on-the-fly. Data must first be acquired and then, 
once downloaded, further processing steps can be performed. Once 
a user has registered with the CDS (https://cds.clima​te.coper​nicus.
eu/user/register), they are able to access their UID and API keys (cur-
rently provided at the bottom of a user's profile page), which are a 
set of credentials that allow API access. A user can then add these 
to their machine's local keychain via the ecmwfr::wf_set_key function, 
which will allow queries to be submitted to the CDS from that ma-
chine. The next step is to build a data request, which is achieved 
with the build_era5_request function. This function takes, as inputs, 
four values defining a bounding box (in decimal degree longitude/
latitude), start and end times and a user-defined prefix for file names 
once they are downloaded. Once executed, a request in list format is 
produced containing query metadata and a string of the variables to 
be downloaded and used in data processing further down the line. 
Next, request_era5 takes the list created in the previous step and 
sends a request for a netCDF file containing the desired data to the 
CDS. User credentials and a local destination for the downloaded 
files are also required inputs. These steps can be implemented in 
code as follows:

# Store your UID and API key credentials as R ob-

jects  

uid <- "*****"  
cds_api_key <- "********-****-****-****-*********
***"  

# Use `ecmwfr` package to register your machine 

with your credentials  

ecmwfr::wf_set_key(user = uid,  
key = cds_api_key,  
service = "cds")  
# Designate your desired bounding coordinates (in 

WGS84 / EPSG:4326)  

xmn <- -4  
xmx <- -2  
ymn <- 49  
ymx <- 51  
# Designate your desired temporal extent  

st_time <- lubridate::ymd("2010:02:26")  
en_time <- lubridate::ymd("2010:03:01")  
# Set a unique prefix for the filename (here based 

on spatial  

# coordinates), and the file path for downloaded  .

nc files (here,  

# the user's working directory)  

file_prefix <- "era5_-4_-2_49_51"  
file_path <- getwd()  
# Build a request  

req <- build_era5_request(xmin = xmn, xmax = xmx,  
ymin = ymn, ymax = ymx,  
start_time = st_time,  

end_time = en_time,  
outfile_name = file_prefix)  
# Submit your request  

request_era5(request = req, uid = uid, out_path = 
file_path)

By default, mcera5 queries the ‘ERA5 hourly data on single levels 
from 1979 to present’ dataset, which provides the most appropri-
ate vertical and temporal resolutions for microclimate modelling. If 
users specify a duration longer than 1 year, the query is first down-
loaded as a separate netCDF file for each year to increase down-
load speed, and then these files are combined (users can turn off 
file combination by specifying the parameter combine = FALSE in 
request_era5). At this stage, the user then waits for the netCDF to 
be downloaded to their machine and will receive a confirmation 
message (‘ERA5 netCDF file successfully downloaded’) from the R 
console upon completion.

3.2  |  Processing data

Once the netCDF file(s) have been downloaded, data for a single 
point can be extracted. This is achieved using extract_clim, which 
creates a data frame of hourly climate variables (Table  1) and ex-
tract_precip which creates a vector of daily or hourly precipitation 
values. Both functions require a path to a downloaded ERA5 netCDF 
file as well as longitude, latitude, start and end times as inputs: # List 
the path of an .nc file that was downloaded via# `request_era5()` 
my_nc <- paste0(getwd(), "/era5_-4_-2_49_51_2010.nc")# 
Specify desired single point (within the bounds of your .nc file) x 
<- -3.654600 y <- 50.640369# Gather all hourly variables, with 
spatial and temporal dimensions# matching the extent, or a sub-
set, of data in one downloaded file point_out <- extract_clim(nc 
= my_nc, long = x, lat = y, start_time = st_time, end_time = en_
time) # You can then inspect the data frame head(point_out)# 
Gather daily precipitation point_out_precip <- extract_precip(nc 
= my_nc, long = x, lat = y, start_time = st_time, end_time = en_
time, convert_daily = TRUE)

By default, extract_clim and extract_precip also apply an in-
verse distance weighting calculation. This means that if the user 
requests data for a point that does not match the regular grid 
found in the ERA5 dataset (i.e. the centre point of each ERA5 grid 
cell), the four nearest neighbouring data points to the requested 
location will be used to create a weighted average of each cli-
mate variable, thereby providing a better estimate of location 
conditions. Furthermore, extract_clim allows the user to apply 
a diurnal temperature range correction to the data. The diurnal 
temperature ranges of ERA5 are artificially lower in grid cells 
classed as sea as opposed to land. It may thus be useful to apply 
a correction if estimates are required for a terrestrial location 
in predominantly marine grid cells. If applied, an internal func-
tion is evoked that uses the land/sea value in the downloaded 
netCDF file to adjust temperature values by the factor provided 

https://cds.climate.copernicus.eu/user/register
https://cds.climate.copernicus.eu/user/register
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using the formula DTRC = DTR
[(

1 − pl
)

Cf + 1
]

, where DTRC is the 
corrected diurnal temperature range, DTR is the diurnal tem-
perature range in the ERA5 dataset, pl is the proportion of the 
grid cell that is land and Cf is the correction factor. The default 
function input value is a correction based on calibration against 
the UK Met Office 1-km2 gridded dataset of daily maximum and 
minimum temperatures (Hollis et al., 2019), itself calibrated and 
validated against a network of (on average) 1,203 weather sta-
tions distributed across the United Kingdom. Further details of 
appropriate corrections to apply are documented in the extract_
clim help file. Beyond these corrections, extract_clim also con-
verts and synthesizes ERA5 variables into forms more familiar 
and of greater utility to ecologists and evolutionary biologists 
(Table 1). For example, wind velocities expressed as vector com-
ponents (u and v) are converted to wind speed and direction and 
direct normal irradiance is converted from a continuous average 
over the preceding hour to an instantaneous measure for the 
hour. By default, extract_precip sums up hourly ERA5 precipita-
tion to the daily level, which is required for the aforementioned 
microclimate models. However, users can instead receive hourly 
values by setting convert_daily = FALSE. Processing of climate 

data employs tidyverse-style pipelines levering the syntax pro-
vided via the tidync package (Sumner, 2021).

Once complete, the user will have a data frame of climate vari-
ables and vector of precipitation, ready for use with multiple micro-
climate modelling tools in R (Figure 2) or for use in other ecological 
applications.

4  |  C A SE STUDIES

4.1  |  Using microclima to calculate hourly 
temperatures on the Roseland Peninsula, Cornwall, 
UK

Here we show how mcera5 can be used in conjunction with the micro-
clima package to construct hourly microclimate temperature estimates 
for 2019 for a grassy region in Cornwall, UK (50.207°N, 4.918°W). 
The runauto function from microclima, which parameterizes and runs 
a microclimate model, was used twice—first automatically acquiring 
NCEP forcing data, and second with ERA5 forcing data that had been 
acquired and processed using mcera5. The microclimate model was run 

TA B L E  1  The names of the processed ERA5 variables used for microclimate modelling, a summary of processing conducted in mcera5 to 
derive these variables and the corresponding original climate products acquired from the ERA5 single-level dataset

mcera5 variable Processing ERA5 variables used

Temperature (°C) Converted from Kelvin to Centigrade 2 m air temperature

Pressure (Pa) NA Surface Pressure

Specific humidity (kg/kg) Derived from dewpoint temperature, air temperature and surface 
pressure based on the calculations of Bolton (1980)

2 m dewpoint temperature, 2 m air 
temperature and surface pressure

Windspeed (m/s) Derived from 10 m zonal and 10 m meridional orthogonal wind 
velocities, adjusted to 2 m height using a standard logarithmic 
height profile

10 m zonal (u, towards east) wind velocity 
and 10 m meridional (v, towards north) 
wind velocity

Wind direction, azimuth 
(degrees from N)

Derived from 10 m zonal and 10 m meridional orthogonal wind 
velocities

10 m u component of wind and 10 m v 
component of wind

Emissivity (0–1) Derived as downward longwave radiation flux divided by the sum of 
net longwave radiation flux and downward longwave radiation 
flux (downward flux negative)

Mean surface downward longwave 
radiation flux and mean surface net 
longwave radiation flux

Net longwave radiation 
(MJ m−2 hr−1)

Converted from W m−2 to MJ m−2 hr−1 Mean surface net longwave radiation flux

Upward longwave radiation 
(MJ m−2 hr−1)

Derived as sum of net longwave radiation flux and downward 
longwave radiation flux (downward flux negative) and converted 
to MJ m−2 hr−1

Mean surface net longwave radiation 
flux and mean surface downward 
longwave radiation flux

Downward longwave 
radiation (MJ m−2 hr−1)

Converted to MJ m−2 hr−1 Mean surface downward longwave 
radiation flux

Direct normal irradiance 
(MJ m−2 hr−1)

Converted from continuous measure to instantaneous measure for 
the hour, adjusted from horizontal to normal and converted to 
MJ m−2 hr−1

Total sky direct solar radiation at surface

Diffuse radiation 
(MJ m−2 hr−1)

Total downward surface solar radiation minus direct solar radiation 
(for a flat surface), corrected to provide an instantaneous 
measure for the hour and converted to MJ m−2 hr−1

Surface solar radiation downwards and 
total sky direct solar radiation at 
surface

Solar zenith angle (degrees) Calculated from location, date and time using the equation of time 
applied with Julian dates and computation of solar declination

Longitude, Latitude, Time, Date

Cloud cover (%) Multiplied by 100 Total cloud cover
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for the duration of January 2019, at a height of 0.1 m using the habi-
tat parameters built into microclima for ‘Short grasslands’. Maximum, 
minimum and mean temperatures all differed between estimates cre-
ated with NCEP and ERA5 forcing data (Figure 3), the greatest of which 
was that NCEP-derived minimum temperatures were ~ 3°C warmer. 
ERA5-derived maximum temperatures, both with and without diur-
nal temperature correction, were greater than NCEP-forced data, and 
temporal variance was lower within predictions forced by NCEP than 
forced by ERA5. These differences can be likely attributed to how well 
each climate product captures the presence of land or sea: the NCEP 
grid cell covering the Roseland Peninsula contains more sea than land 
(Figure S1), whereas the fine-grain ERA5 cells considered in the dis-
tance weighting were a mixture of land and sea, better reflecting the 
shape of the coastline (Figure S1). In tandem, increasing spatial resolu-
tion of input data and integrating the estimates of coastal effects on 
local climate, as is done with mcera5, can result in significantly different 
microclimate predictions.

4.2  |  Using NicheMapR to generate point 
predictions of soil temperature and moisture

We also demonstrate the interoperability of mcera5 with the 
NicheMapR package to generate point predictions of microclimate 
for a specified temporal window. For this case study, we used the 
newly implemented micro_era5 function in NicheMapR, which spe-
cifically uses mcera5 to access ERA5 forcing data. We also used 
NicheMapR's micro_ncep function to generate a comparison against 
NCEP forcing data.

Using each function, we replicated a test against empirical 
soil temperature and soil moisture observations in an open pad-
dock in eastern Australia for two depths (Yanco Site 2, Smith 
et al., 2012, Kearney et al., 2020; Kearney & Maino, 2018). For 
reference, we compare these predictions to those generated 
with the micro_aust function which uses the AWAP (‘Australian 
Water Availability Project’) 5-km resolution daily gridded 

F I G U R E  3  Outputs from microclimate model in the microclima package applied to the Roseland Peninsula, Cornwall, UK (50.207°N, 
4.918°W). Maps in the left-hand column show temperatures using NCEP forcing data, those in the middle column show temperatures 
using ERA5 forcing data accessed via mcera5 with a diurnal temperature correction value of 1.285 and those in the right-hand column show 
temperatures using ERA5 forcing data accessed via mcera5 without diurnal temperature correction (no DTC).



    |  7Methods in Ecology and Evolu
onKLINGES et al.

weather product for Australia, to compare ERA5-forced predic-
tions against those forced by a finer-resolution regional product 
(Jones et al., 2009; Kearney & Maino, 2018). Predictions for soil 
temperature were similarly accurate for all forcing datasets but 
soil moisture predictions from ERA5 forcing were considerably 
more accurate than those from NCEP (14.2% decrease in root-
mean-square deviation from empirical data) and approached 
the accuracy and precision of predictions made with the finer-
resolution AWAP data (Figure 4, Table 2).

4.3  |  Using microclimc to generate point 
predictions of shaded microclimates

We also made additional predictions of air temperature and rela-
tive humidity at 1.5 m height from 1 January 2017 to 31 December 
2017 within a deciduous broadleaved forest in Massachusetts, 
USA at the site of an ecosystem flux tower supplying long-term 
measurements by fine-wire thermistors (42°32′N, 72°11′W, 
Munger,  2021, Urbanski et al.,  2007). Here we used the pack-
age microclimc (Maclean & Klinges,  2021), which is especially 
equipped to model heat transfer and storage within and below 
vegetation canopies, and validated predictions against empiri-
cal measurements. Vegetation parameter estimates of the site 
were derived using the parameterization for ‘Deciduous broad-
leaved forest’ provided by PAIfromhabitat in the microctools 
package (Maclean & Klinges,  2021), a companion to microclimc. 
We modelled below-canopy air temperature and relative hu-
midity assuming steady-state conditions using the function run-
modelS and performed two model runs: once with NCEP forcing 
and again with ERA5 forcing (acquired via mcera5). Predictions 
forced by ERA5 had better fit to empirical temperature and rela-
tive humidity data than NCEP-driven predictions throughout the 

year: root-mean-square deviation decreased 30.6% and 33.1% 
for air temperature and relative humidity, respectively, and im-
provements held at both coarse and fine-temporal resolutions 
(Figure 5; Figure S2; Table 2).

5  |  CONCLUSION

The finer spatial and temporal resolution of the ERA5 dataset 
should generally produce more accurate predictions of microcli-
mate than those based on the NCEP data or other global climate 
products that are provided at coarser scales. We found this to 
be true for barren, sparsely vegetated and canopied systems in 
our case studies, with on average a 13.4% improvement in root-
mean-square deviation of microclimate predictions when models 
were enabled by mcera5 as opposed to driven by NCEP (Table 2). 
Improvements over other forcing datasets were in some cases 
small when predicting soil and air temperature as compared to 
the more noticeable improvement in humidity and soil moisture 
predictions. The microclima and microclimc mesoclimatic tempera-
ture corrections, including lapse-rate adjustments, can moderately 
compensate for the low spatial resolution of NCEP air tempera-
ture, but it is not possible to similarly adjust precipitation and hu-
midity data. Thus, soil moisture, humidity and snow predictions 
should be especially more accurate when the ERA5 dataset is 
used for microclimate prediction. We also expect the ERA5 data-
set to perform better than NCEP in mountainous regions, where 
the higher spatial resolution of ERA5 better captures topographic 
complexity. These strengths make the mcera5 package highly suit-
able for locations where predicting microclimate is of most need, 
such as within forests (De Frenne et al., 2021), snowy landscapes 
(Niittynen et al., 2018) and across elevation gradients (Klinges & 
Scheffers,  2021). Although the package's design is tailored for 

F I G U R E  4  Two months of empirical 
and predicted (a) soil temperature and 
(b) soil moisture at a depth of 3 cm for an 
unshaded paddock in eastern Australia 
during spring 2008 (empirical data from 
Kearney & Maino, 2018). Predictions 
generated using the NicheMapR package 
functions micro_aust (AWAP), micro_ncep 
(NCEP) and micro_era5 (ERA5), the 
latter of which was enabled by mcera5. 
ERA5 forcing outperformed NCEP and 
had comparable performance to AWAP 
forcing, which is only regionally available.
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driving microclimate models, given its open-access licence the 
code can be re-adapted to query different CDS variables, thereby 
providing for a broad range of environmental applications. By 

supplying ecologists and evolutionary biologists with easy access 
to ERA5 data in table form as well as processing ERA5 to provide 
as input to popular microclimate models, the mcera5 package helps 

TA B L E  2  Summary statistics from a comparison between empirical observations (Kearney & Maino, 2018; Urbanski et al., 2007) and 
predicted soil temperature, soil moisture, air temperature and relative humidity values using NCEP, AWAP and ERA5 forcing data, the latter 
of which was enabled by mcera5. Validation statistics reported are the Pearson's correlation coefficients (r) of empirical data and predictions, 
and the root-mean-square deviation (RMSD) of predictions from empirical data. The use of mcera5 improved predictions compared to NCEP 
forcing and generated prediction accuracy competitive against the finer-resolution (yet only regionally available) AWAP

Site Variable Depth/height (cm) Forcing r RMSD

Harvard Forest, Massachusetts, USA Air temperature 150 ERA5 0.98 4.08

NCEP 0.95 5.88

Relative humidity 150 ERA5 0.79 23.92

NCEP 0.48 35.75

Yanco Site 2, New South Wales, AUS Soil temperature 3 ERA5 0.97 2.8

NCEP 0.96 2.8

AWAP 0.94 3.2

15 ERA5 0.98 1.9

NCEP 0.98 1.7

AWAP 0.99 1.7

Soil moisture 3 ERA5 0.73 5.5

NCEP 0.62 6.7

AWAP 0.78 5

15 ERA5 0.68 5.1

NCEP 0.61 5.7

AWAP 0.65 5.2

F I G U R E  5  Empirical relative humidity underneath the canopy of a deciduous broadleaved forest (42°32′N, 72°11′W, Urbanski 
et al., 2007) and model predictions from the microclimc package forced with NCEP and ERA5 data (acquired via mcera5). The top panel 
provides a year time series, and bottom panels are subsets in January (northern hemisphere winter) and July (northern hemisphere summer) 
of the same time series to demonstrate variability at finer temporal resolution.
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advance a holistic workflow of generating high-resolution, accu-
rate and efficient microclimate predictions anywhere on Earth.
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