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Abstract
Aim: The scale of environmental data is often defined by their extent (spatial area, 
temporal duration) and resolution (grain size, temporal interval). Although describing 
climate data scale via these terms is appropriate for most meteorological applications, 
for ecology and biogeography, climate data of the same spatiotemporal resolution and 
extent may differ in their relevance to an organism. Here, we propose that climate 
proximity, or how well climate data represent the actual conditions that an organism 
is exposed to, is more important for ecological realism than the spatiotemporal resolu-
tion of the climate data.
Location: Temperature comparison in nine countries across four continents; ecologi-
cal case studies in Alberta (Canada), Sabah (Malaysia) and North Carolina/Tennessee 
(USA).
Time Period: 1960–2018.
Major Taxa Studied: Case studies with flies, mosquitoes and salamanders, but con-
cepts relevant to all life on earth.
Methods: We compare the accuracy of two macroclimate data sources (ERA5 and 
WorldClim) and a novel microclimate model (microclimf) in predicting soil tempera-
tures. We then use ERA5, WorldClim and microclimf to drive ecological models in 
three case studies: temporal (fly phenology), spatial (mosquito thermal suitability) and 
spatiotemporal (salamander range shifts) ecological responses.
Results: For predicting soil temperatures, microclimf had 24.9% and 16.4% lower 
absolute bias than ERA5 and WorldClim respectively. Across the case studies, we 
find that increasing proximity (from macroclimate to microclimate) yields a 247% 

www.wileyonlinelibrary.com/journal/geb
https://doi.org/10.1111/geb.13884
mailto:
https://orcid.org/0000-0002-7900-9379
https://orcid.org/0000-0003-0247-5758
https://orcid.org/0000-0002-1933-0750
https://orcid.org/0000-0001-8030-9136
https://orcid.org/0000-0003-0638-9582
https://orcid.org/0000-0003-4023-4402
https://orcid.org/0000-0003-2157-5965
https://orcid.org/0000-0002-6618-4733
https://orcid.org/0000-0002-3349-8744
https://orcid.org/0000-0001-6819-4911
https://orcid.org/0000-0002-8120-5248
https://orcid.org/0000-0002-8613-0943
https://orcid.org/0000-0003-4385-7656
https://orcid.org/0000-0002-1215-2648
https://orcid.org/0000-0002-0751-6312
https://orcid.org/0000-0002-1018-9316
https://orcid.org/0000-0001-6203-5143
https://orcid.org/0000-0002-5609-5921
https://orcid.org/0000-0003-3111-680X
https://orcid.org/0000-0003-1730-947X
https://orcid.org/0000-0003-0313-8147
https://orcid.org/0000-0002-6356-2858
https://orcid.org/0000-0001-6346-2964
https://orcid.org/0000-0003-3007-4070
https://orcid.org/0000-0002-5875-2112
https://orcid.org/0000-0002-6979-9880
https://orcid.org/0000-0002-9428-490X
https://orcid.org/0000-0002-9663-4344
https://orcid.org/0000-0001-9007-4959
https://orcid.org/0000-0003-2423-3821
mailto:dklinges9@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fgeb.13884&domain=pdf&date_stamp=2024-06-26


2 of 16  |     KLINGES et al.

1  |  INTRODUC TION

Explorations of scale are fundamental to understanding patterns 
and processes in the natural world (Wiens, 1989). Given that most 
urgent issues of global change involve phenomena that occur across 
spatial and temporal scales, it is crucial to understand how drivers of 
ecological responses shift across scales, and how a process that is 
shaped at one scale plays a role at another scale (Levin, 1992).

Climate is an omnipresent environmental component that is no-
tably scale dependent. For instance, at the synoptic (or continental) 
spatial scale, across thousands of kilometres, climate is principally de-
termined by latitude, elevation, distance to large bodies of water and 
ocean dynamics. In ecology and biogeography, climate at this scale is 
often referred to as macroclimate (Geiger et  al.,  2009). Locally (one 
hundred meters or less), however, climate varies substantially due to 
variation in vegetation, terrain, and soil conditions—climate at this 
scale has been referred to as microclimate (Geiger et al., 2009). Climate 
is also scale dependent in the temporal domain, as the processes that 
shape climate differ between seasonal, decadal and geological periods 
(Clark, 1985). Unsurprisingly, how climate drives ecological responses 
also differs across scales. For instance, thermal variation over the 
course of a day may determine periods of an organism's foraging ac-
tivity or its exposure to stressful extremes, while annual fluctuations 
influence phenology or development (Kefford et al., 2022).

In classic macroecological studies, climate has been considered 
to be more important for distributions of species and communities 
at broad, rather than local, spatiotemporal scales (Woodward, 1987). 
Yet, both time-honoured and recent work have revealed the many 
roles of microclimate in ecology and evolution (Helmuth,  1998; 
Huey, 1991; Kearney & Porter, 2009; Lembrechts et al., 2019; Maclean 
& Early, 2023; Potter et al., 2013). Given that climate and its ecological 
effects are both scale dependent, the source of climate data, and the 
structure of such data in a modelling workflow, may critically impact 
the detection of ecological signals (Buckley et al., 2023a).

For much work in spatial ecology—especially related to spe-
cies' distributions and diversity—researchers use macroclimate 

maps generated from mechanistic or statistical models (e.g. Fick & 
Hijmans, 2017; Hersbach et al., 2020). As with all model predictions, 
these climate maps are imperfect. In an effort to improve climate 
data for ecological applications, many studies have explored the 
impact of increasing either spatial or temporal resolution of climate 
data, and occasionally both in tandem, on the accuracy of ecological 
predictions (see review by Lembrechts et al., 2019). Yet, increasing 
spatiotemporal resolution of climate data alone does not necessarily 
increase the likelihood of capturing the relevant microclimates for 
a given organism or process, and may indeed result in lower pre-
diction accuracy of ecological responses (Abdulwahab et al., 2022). 
Macroecological studies rarely measure how well climate data rep-
resent the actual exposure of an organism or system, independent 
of the data's spatiotemporal resolution. We call this the ‘proximity’ 
of climate data, which we define in further detail below (Box 1). By 
focusing on climate data resolution rather than proximity, many 
large-scale studies tend to overlook an established legacy in eco-
physiology of understanding climate as experienced by organisms 
(Huey, 1991; Kearney & Porter, 2009). Unfortunately, this concept 
of climate proximity is rarely incorporated into macroecology or bio-
geography, and thus its importance for spatiotemporal ecological 
modelling has not yet been systematically explored and quantified.

Here, we investigate how climate spatial resolution, temporal reso-
lution and proximity each influence the accuracy of temperature esti-
mates and performance of climate-driven ecological models (Figure 1). 
We employ a set of temperature data sources that differ in these di-
mensions of scale, and perform spatial and temporal aggregation/dis-
aggregation, to evaluate the importance of spatial resolution, temporal 
resolution and proximity of temperature data in each of three case 
studies: crop pest emergence, mosquito thermal suitability and sala-
mander distribution changes. These case studies correspond to a spa-
tial, temporal, and spatiotemporal ecological response, respectively, 
and exemplify common applications of climate data via disparate mod-
els, ecosystems and organisms. We expect to find that climate data 
of high proximity will predict ecological responses better than climate 
data that are of higher spatial or temporal resolution yet low proximity 

improvement in performance of ecological models on average, compared to 18% and 
9% improvements from increasing spatial resolution 20-fold, and temporal resolution 
30-fold respectively.
Main Conclusions: We propose that increasing climate proximity, even if at the sac-
rifice of finer climate spatiotemporal resolution, may improve ecological predictions. 
We emphasize biophysically informed approaches, rather than generic formulations, 
when quantifying ecoclimatic relationships. Redefining the scale of climate through 
the lens of the organism itself helps reveal mechanisms underlying how climate 
shapes ecological systems.

K E Y W O R D S
biophysical ecology, climate change, ecophysiology, macroclimate, microclimate, nonlinearity, 
resolution, species distribution model
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    |  3 of 16KLINGES et al.

(‘distal’). Such findings would improve our understanding of the role 
of scale in bioclimatic relationships and would call for revision to our 
methods for quantifying such processes.

2  |  METHODS

2.1  |  Temperature data

We used three sources of global climate data that each differ for two 
of the three studied dimensions (spatial resolution, temporal resolu-
tion and/or proximity; Figure 2). The proximity of these climate data 

is gauged according to the microhabitat requirements and life-cycle 
processes of three case study organisms below. For these organisms 
(fly larvae, mosquitoes and salamanders), proximal climate is near 
and below the ground as well as underneath vegetation, which we 
represent using a microclimate model (see below).

The first climate product, ERA5, is an assimilation of numerical 
weather model predictions, satellite imagery and free-air weather 
station measurements (Hersbach et al., 2020). ERA5 data are avail-
able at several spatiotemporal resolutions and heights; here, we 
used hourly measurements (i.e. fine temporal resolution) at 0.25° 
resolution (c. 27.75 × 27.75 km at the equator or 770 km2; i.e. coarse 
spatial resolution) at 2-m height above ground.

BOX 1 The proximity of climate data

Scientists have traditionally grounded the definition of scale based upon extent (spatial area, temporal duration) and resolution (grain 
size, temporal interval) (Wiens, 1989). However, for climate data, resolution and extent are not comprehensive in describing their 
scale, as data of the same resolution and extent may differ in their ecological relevance to different organisms or processes. Here, we 
define ‘climate proximity’ as the degree to which climate data represent the actual conditions that an organism or system is exposed 
to, as a third dimension of scale distinct from the spatiotemporal resolution of the climate data (Figure 1). While resolution describes 
the quantity or frequency of data, proximity describes how well climate data capture radiation, water and heat exchange relevant to 
a given species for a time and location. When estimating distributions of a forest-dwelling species, a 1-km2 temperature product that 
closely represents forest understory conditions is more proximal than a 100-m2 product that represents free-air conditions as meas-
ured by weather stations and without accounting for the effects of vegetation. Similarly, mean monthly soil temperatures are more 
proximal for belowground organisms than daily air temperatures. We call the opposite of proximal climate, ‘distal’ climate, that is, only 
indirectly related to ecological responses (Austin, 2002; Gardner et al., 2019). Proximity is evaluated in a context-specific manner, 
which entails that although it can be qualified (e.g. one climate measurement is more proximal for a given species than another climate 
measurement) it is challenging to quantify in general terms (e.g. a 20% increase in proximity). Key to increasing climate proximity for 
a given organism is knowledge of the organism's microhabitats, physiology and ecology, nested within the broader habitat and land-
scape (Figure 1). For a gridded climate dataset, high proximity may not always involve representing the same heights or microhabitats 
across space or time. For ants, proximal climate might be air temperatures in forests, but soil temperatures in barren environments; 
for many amphibians, proximity entails aquatic conditions for tadpoles, and terrestrial conditions for adults.

Although proximity is distinct from spatial or temporal resolution, highly proximal climate typically varies at fine spatial and temporal 
scales. For instance, across horizontal space, topographic heterogeneity will determine how much local temperatures differ from 
macroclimate; vertically, soil temperatures can decouple considerably from air temperatures; and temporally, high-frequency wind 
turbulence drives thermal gradients near the ground (see Figure 2 for other mechanisms). Yet, there are also aspects of climate prox-
imity that do not align well within the spatial or temporal dimensions, as proximity also depends upon the biotic context and how 
organisms ‘construct’ their environments through their physical properties and behaviour (Kearney & Porter, 2009; Pincebourde & 
Woods, 2020). Understanding the ecophysiology of tree frogs inhabiting epiphytic ferns in forest canopies requires measuring or 
simulating fern microclimates (Scheffers et al., 2014), which are nested within the canopy microclimate. Or for many parasites, the 
spatial location of climate data may matter less than accounting for host body temperatures (Thomas & Blanford, 2003). Furthermore, 
not all climate-forcing processes contribute to proximity for a given context; the attenuation of heat exchange by snow creates an 
important subnivium microclimate for small-bodied species, but less so for many large mammals or birds (Pauli et al., 2013).

Climate proximity should also be considered for understanding ecological processes for which there may be many relevant species, 
such as soil carbon sequestration. Given the impracticality of delineating proximal conditions for many taxa across regions, distal 
macroclimate may occasionally be useful as a ‘mean field approximation’ of climate exposure across ecological communities (Bennie 
et al., 2014). Yet oftentimes, this approximation is inadequate given heterogeneous microclimates and nonlinear responses to climate 
(Martin & Huey, 2008). Ultimately, operative conditions of organisms (body temperatures) are the broker between climate exposure 
and biological responses. Yet, given the challenge of estimating body conditions across space and time, generating or selecting highly 
proximal climate data serves as a useful surrogate for understanding bioclimatic relationships.
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4 of 16  |     KLINGES et al.

To complement ERA5's coarse spatial yet fine temporal res-
olution, we also included monthly (coarse temporal resolution) 
macroclimatic data from the WorldClim database (v2.1, Fick & 
Hijmans,  2017), which are global interpolations derived from 
weather station measurements (i.e. low proximity, or distal, for most 
taxa). Relative to other global gridded products, WorldClim has finer 
spatial resolution (30″ or c. 1 km2 at the equator)—although we note 
that 1 km2 can still contain high microclimate variability that is rele-
vant to physiology and ecology.

To represent proximal climate data, we employed micro-
climf (Maclean, 2023), a recently developed grid version of a pre-
viously published mechanistic microclimate model (Maclean & 
Klinges, 2021). In brief, microclimf estimates near-ground air and soil 
temperatures principally based upon the net energy flux density 
absorbed by surfaces (vegetation/soils) by emulating a Lagrangian 
localized near-field model (see Table S1 and Supporting Information 
for details). Using microclimf, we generated spatiotemporal predic-
tions of below-canopy topsoil temperature (5-cm depth), which is 
proximal for the case study organisms as detailed below, at 1 km2 
and hourly resolution. While estimating microclimate can be better 
achieved at the meter scale (Briscoe et al., 2023), here we matched 
microclimf predictions to the 1 km2 spatial resolution of WorldClim 

and hourly resolution of ERA5 to compare climate data of the same 
resolution yet different proximity.

We assessed how closely ERA5, WorldClim and microclimf tem-
perature predictions matched 371 time series of in  situ soil tem-
perature measurements (proximal microclimate for our case study 
organisms) from across four continents (Lembrechts et al., 2020; see 
Figure S1 and Supporting Information for details).

2.2  |  Case study 1: Temporal crop pest emergence

Temporal models with climate as input are commonly employed 
for modelling population dynamics, tracking phenology and 
ecological forecasting. To illustrate a biological process using a 
temporally explicit model, we predicted the emergence rates of 
fossorial larvae for two fly species: the cabbage maggot (Delia 
radicum; Linnaeus, 1758) and the seedcorn maggot (Delia platura; 
Meigen, 1826). As two prominent pests that feed on crop roots, 
these flies cause massive damage, such as up to a $73 million an-
nual loss in Canada (Broatch et  al.,  2006). Accurate predictions 
of fly phenology are useful for informing management practices, 
such as the timing of planting new crops or of pesticide treatments 

F I G U R E  1 Top: the three dimensions 
of climate data resolution used for 
ecological modelling, none of which are 
true characteristics of climate in nature, 
but constructs for describing data. 
The proximity of climate describes its 
relevance to a given organism, process or 
system. For example, the soil temperature 
surrounding a fossorial mouse is more 
proximal (i.e. directly impacts operative 
body temperatures) than the forest 
understory microclimate, which, in turn, 
is more proximal than ambient free-air 
conditions. Bottom: the benefits of 
increasing each of these dimensions of 
climate data may then depend on the 
domains predicted by the ecological 
model: a process that is spatial, temporal 
or spatiotemporal.
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(Dent, 2000). Given that larval survival and growth of both spe-
cies is suspected to be more sensitive to soil temperatures than air 
temperatures (Lepage et al., 2012), phenological predictions may 
diverge when calculated from temperature sources of different 
proximity (e.g. ERA5 or WorldClim macroclimate vs. microclimf soil 
microclimate).

We derived rates of insect emergence from topsoil as pre-
dicted by ERA5, WorldClim and microclimf, during 2002 averaged 
across five locations in Alberta, Canada, matching locations and 
days of observations of these two species by Broatch et al. (2006), 
who reported the proportion of a larval population that emerged 
as a winged adult per day. We extracted hourly temperature 
predictions from ERA5 and microclimf for the year 2002, while 
for WorldClim we extracted the average monthly means, min-
ima and maxima for the corresponding decade (2000–2009), as 
1-km2 WorldClim does not include hourly data, nor data for just 
2002. We also temporally aggregated/disaggregated each climate 
data source (hourly to monthly) to isolate the effects of spatial 
resolution, temporal resolution and proximity (see Supporting 
Information for details). We then converted temperature data 
into growing degree days (GDDs). GDDs are indices for the ac-
cumulation of heat units above a minimum (base) temperature for 
organismal development, and are frequently used for predicting 
insect and plant phenology (Arnold,  1960). Per Arnold  (1960), 
we calculated GDDs as the cumulative sum of the deviations of 
the average of daily minima and maxima above species-specific 

base temperature thresholds: 4.0°C for D. radicum (Collier & 
Finch, 1985), 3.9°C for D. platura (Sanborn et al., 1982). We then 
used GDDs from ERA5, WorldClim and microclimf to drive a sim-
ple mathematical model for emergence rates of each fly species. 
We used the model originally developed by Pearl and Reed (1920) 
and parameterized by Broatch et al.  (2006), which estimates the 
proportion of insect emergence per day using a logistic function 
driven by GDDs (see Supporting Information for model specifica-
tion). Given that this model was developed to inform the timing of 
pesticide application, it does not necessitate, nor provide, absolute 
values of adult abundance, only proportions of adults emerging 
over time for identifying the timing of peak emergence. To validate 
predictions from each temperature-driven emergence model, we 
measured the absolute error of species-specific predictions from 
the observed emergence rates (error measured as the number of 
days between predicted timing of an emergence threshold, e.g. 
50% emergence by day of year 180, and the observed day of year 
when that threshold was actually crossed).

2.3  |  Case study 2: Spatial bioclimate and 
mosquito thermal performance

To examine whether the spatial, temporal and proximal dimen-
sions of climate data may differentially change estimates of 
bioclimate and organismal thermal performance, we generated 

F I G U R E  2 Climate data can be described in spatial, temporal and proximal domains, as illustrated by the contrasting scales of the data 
products employed in this study: ERA5, WorldClim and microclimf (a). The proximity of climate describes its relevance to the actual exposure 
of a given organism, process or system. To categorize the proximity of climate data, one must consider the meteorological and geographical 
mechanisms that such data adequately represent, which drive how radiation, moisture and heat exchange (latent and sensible) determine the 
temperature of a time and location. In (b), we present a nonexhaustive ordered list of temperature-forcing mechanisms and categorize which 
are represented by each climate data product, either explicitly (for the process-based ERA5 and microclimf) or implicitly (through covariates 
used in the statistical interpolation employed by WorldClim).

Spatial

Proximal
(for case study 

organisms)

100km

hourly

macro

Temporal

10m 100m 1km 110km

daily monthly annual decadal

mesomicrooperative

Proximal Mechanisms
Solar Latitude (solar radiation angle)
Solar Season (axial tilt)
Solar Earth’s rotation
Air Sensible heat flux (convective exchange)
Air Vapour pressure gradient (latent heat exchange)
Air Cloud cover (radiation scattering/interception)

Water Coastal effects (latent heat exchange)
Terrain Altitudinal lapse rate
Terrain Radiation interception
Terrain Heat storage and conductance
Terrain Longwave radiation
Terrain Albedo
Terrain Topographic shading
Terrain Cold air drainage
Terrain Topographic wetness

Vegetation Stomatal conductance
Vegetation Woody conductance
Vegetation Radiation interception
Vegetation Albedo

ERA5 WorldClim

(a) (b)

microclimf
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maps of (1) mean temperature, (2) extreme temperature and (3) 
temperature-dependent fecundity for the mosquito Aedes aegypti 
(Linnaeus, 1762) in Sabah within Malaysian Borneo (45,785 km2). 
Aedes aegypti is a prominent vector of several human diseases, in-
cluding dengue and yellow fever, which causes millions of infec-
tions and deaths per year (Bhatt et al., 2013). We chose this tropical 
region given its widespread land use change from primary forest 
to plantation forest (e.g. oil palm), which may facilitate mosquito 
establishment (Saager et al., 2023). Aedes aegypti rests under veg-
etation or in urban microhabitats, where it deposits eggs in water 
(Cheong et al., 2014). Therefore, microclimate predictions that rep-
resent vegetative shading (e.g. microclimf) are more proximal than 
free-air macroclimate for adult mosquitoes. Across Sabah, we ex-
tracted hourly temperature predictions from ERA5 and microclimf 
for the year 2018, while for WorldClim we extracted the monthly 
means, minima and maxima estimated at 1 km2 for the correspond-
ing decade (2010–2019). From each temperature product, we then 
calculated spatial layers of mean annual temperature (BIO1), maxi-
mum temperature of the warmest month (BIO5), and average fe-
cundity of A. aegypti using a thermal reaction norm (see Supporting 
Information for details). This reaction norm was developed by 
Mordecai et  al.  (2017) using air temperatures, rather than water 
temperatures, although the latter more proximally represents ex-
posure of larval mosquitoes (Paaijmans et  al.,  2013). To validate 
fecundity predictions, we averaged A. aegypti fecundity measure-
ments across temperature from several laboratory studies (Braks 
et  al.,  2006; Day et  al.,  1994) to generate a normally-distributed 
range of fecundity values. We then measured the area of integra-
tion (overlap) between lab-derived fecundity observations with 
ERA5, WorldClim and microclimf fecundity predictions (see Klinges 
& Scheffers, 2021 and Supporting Information for details).

2.4  |  Case study 3: Spatiotemporal salamander 
prevalence shifts

Given the widespread interest in climate change-induced range 
shifts (Lenoir et  al.,  2020), we tested how the spatial resolution, 
temporal resolution and proximity of climate data affect predictions 
of spatiotemporal changes in prevalence of Jordan's red-cheeked 
salamander (Plethodon jordani; Blatchley,  1901) across its range. 
Plethodon jordani is a fossorial salamander, endemic to the Great 
Smoky Mountains National Park (GSMNP, 2090 km2) in the eastern 
United States, and relies upon cool, moist subsurface microhabitats 
(i.e. under rocks, logs or in burrows). Given that such microclimates 
are better represented by soil temperatures than free-air tempera-
tures, microclimf is more proximal than either ERA5 or WorldClim 
for P. jordani. Across GSMNP's wide elevation range (267–2025 
masl), P. jordani is climatically constrained to above 600 m (Gifford & 
Kozak, 2012). With climate change, this mountain-dwelling species 
may either shift towards higher elevations and/or experience abun-
dance changes (Feeley et al., 2012).

To explore the impact of climate data resolution and proximity 
on spatiotemporal salamander prevalence change predictions, we 
conducted two steps, as detailed below. First, we fitted species 
distribution models (SDMs) separately for the 1960s and 1990s but 
without using any climate covariates (i.e. only using observer bias 
and topographic variables). Then, we compared how generalized 
additive models (GAMs) with climate covariates built from ERA5, 
WorldClim or microclimf were able to predict changes in SDM prev-
alence estimates over time.

For SDMs, we collated georeferenced occurrence (presence-
only) data from two primary survey periods: 1961–1970 (‘1960s’, 
975 surveys) and 1991–2000 (‘1990s’, 704 surveys) (IRMA, 2021). 
Separately for the 1960s and 1990s, we fitted inhomogeneous 
Poisson point process models (IPPMs, Renner et al., 2015) to esti-
mate relative prevalence of P. jordani on a 0–1 scale. The topographic 
predictors used in each of these models included elevation, slope and 
aspect (measured in radians) at 1-km2 resolution (obtained from the 
Amazon Web Services Terrain Tiles). An additional spatial predictor, 
distance from the closest trail on which salamander surveys were 
conducted, was also included in each model to control for observer 
bias. The quality of fit was determined through five-fold cross valida-
tion and model performance was assessed using CBI, AUC and TSS 
criteria (Allouche et al., 2006). CBI results, which are most appro-
priate for presence-only data paired with pseudo-absences (Boyce 
et al., 2002), are presented in the main text. Salamander prevalence 
changes were then considered as the differences in SDM-derived 
prevalence from the 1960s to the 1990s (see Supporting Information 
for details on model calibration, tuning, pseudo-absence point selec-
tion, and validation).

Next, we aimed to understand how prevalence shifts over time, 
as predicted by our SDMs, were explained by climatic changes 
expressed by different temperature products. For this, we fitted 
a set of GAMs using bioclimatic layers from one of either ERA5, 
WorldClim or microclimf as predictors, and changes in salamander 
prevalence as the response variable assuming a Gaussian distri-
bution. For bioclimatic variables, we used the only two variables 
with historic decadal WorldClim data at 1 km2—annual thermal 
maximum (BIO5) and minimum (BIO6)—which have been shown to 
correlate with distributions of salamanders in this region (Baken 
et al., 2021). For each climate source, we calculated the per-pixel 
change in each bioclimatic variable between the 1960s and 1990s, 
and used these climate change estimates as GAM predictors. To 
further explore how the spatial resolution of climate data influ-
ences predictions independent of the temperature product used, 
we spatially aggregated (averaged across cells) and disaggregated 
(bilinear interpolation) temperatures from microclimf, WorldClim 
and ERA5—each at 1-km, 3-km, 10-km and 27.75-km resolution. 
We then fitted GAMs for each temperature product at each of 
these spatial resolutions, corresponding to 12 models in total (see 
Supporting Information for more details on climate data process-
ing, fitting GAMs and measures taken to control for survey effort 
and initial prevalence).
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    |  7 of 16KLINGES et al.

2.5  |  Software

All analyses were conducted in R v4.2 (R Core Team, 2022); all pack-
ages used for data access, processing and analysis are provided in 
the Supporting Information.

3  |  RESULTS

Across 371 time series of in situ soil temperature data globally, mi-
croclimf had 8.2% and 25.2% lower root mean square error (RMSE) 
than ERA5 and WorldClim, respectively, and 24.9% and 16.4% lower 
absolute bias than ERA5 and WorldClim respectively (Figure  3, 
Table S2, Figure S2).

In case study 1, temperature predictions by ERA5, WorldClim 
and microclimf in Alberta, Canada were similar (Figure  4a). Yet, 
marginal differences among the three temperature products 
yielded disparate calculations of growing degree days (Figure 4b), 
thereby resulting in divergent estimates of insect emergence 
(Figure  4c, Table  S3). Emergence models driven by microclimf 
(proximal climate) at hourly resolution were most accurate, with 
an average error of 6.57 days, followed by ERA5 at hourly reso-
lution (17.0 days) and all other models descending with temporal 
resolution except monthly microclimf (17.6 days), which performed 
better than daily WorldClim (20.42 days; Figure S3). Average error 
reported here is the mean error across all proportion emergence 
thresholds for both species.

In case study 2, microclimf predictions of A. aegypti mos-
quito fecundity were the most accurate, with 6.22-fold and 
7.76-fold increases in overlap with the empirical fecundity dis-
tribution as compared to those of ERA5 and WorldClim respec-
tively (Table S4). microclimf fecundity predictions were also higher 
(x̄  = 6.96 eggs laid / day) than fecundity derived from ERA5 or 
WorldClim (x̄  = 5.30 and x̄  = 4.92 respectively; Figure 5, Table S5). 
Contrasting with fecundity predictions, BIO1 calculated from 
ERA5, WorldClim and microclimf all had similar distributions that 
overlapped considerably (mean overlap = 70.1%), while BIO5 dis-
tributions diverged between temperature products (mean over-
lap = 16.9%, Table S4).

In case study 3, the three temperature products yielded dif-
ferent predictions of changes in the prevalence of P. jordani sal-
amanders between the 1960s and the 1990s (Figure  6b,c). The 
microclimf-driven GAM performed best, explaining 58.1% of all 
deviance compared to only 39.1% and 17.2% for GAMs using 
WorldClim and ERA5 respectively (Tables S6 and S7). Furthermore, 
the predicted rate of historic warming differed considerably across 
climate data products (Figure  6a). For instance, the increase in 
BIO5 computed from WorldClim was 0.597°C per decade, which 
was 84% and 88% faster than the rate at which BIO5 was warming 
based on ERA5 and microclimf respectively. Such warming corrob-
orates upslope shifts of salamanders as predicted by species dis-
tribution models (SDMs): the elevations of pixels with at least 80% 
salamander prevalence on average shifted up by 136 m. SDMs had 

good fit to hold out validation data as indicated by their CBI (CBI: 
0.963 for 1960s model, 0.988 for 1990s model; see Supporting 
Information for further validation).

4  |  DISCUSSION

Measuring the role of scale in biological and environmental pro-
cesses requires proper definition of scale itself. In our study, we 
defined climate proximity (Box 1) and explored its importance as 
an ecologically relevant component of climate scale. We incorpo-
rated several temperature data products into a suite of ecological 
models to evaluate the benefits of increasing spatial resolution, 
temporal resolution or proximity of climate data relative to the 
focal species. We found via our case studies that the predictive 
power of climate-driven ecological models is maximized when 
temporal resolution, spatial resolution and proximity are all high. 
Yet, increasing climate proximity (i.e. from macroclimate to micro-
climate while the spatiotemporal resolution remained constant) 
resulted in a 247% mean improvement in ecological models across 
case studies, relative to only an 18% improvement from a mean 
20-fold increase in spatial resolution, and a 9% improvement from 
a mean 30-fold increase in temporal resolution. This entails that 
when selecting or processing climate data, prioritizing higher 
proximity, yet coarser spatiotemporal resolution, may increase 
data quality (for ecological prediction) and also decrease quantity 
(i.e. data density in space and time), and therefore, possibly en-
tail less computational demand or storage space. Here, we discuss 
how treating proximity separately from spatiotemporal scale is not 
just a change of semantics, but it advances theory by helping to 
identify the mechanisms of organismal responses to climate. By 
considering climate proximity, one emphasizes biophysically in-
formed approaches rather than generic formulations when match-
ing climate data to an ecological system.

4.1  |  Modelling temporal ecological processes

In our first case study, we found that temperature data with both 
fine temporal resolution and high climate proximity yielded the 
most accurate predictions of the emergence rates of two fossorial 
insect species, D. platura and D. radicum (Figure 4). Prediction errors 
varied across temperature products from 6.57 days (hourly topsoil 
temperatures from microclimf) to 33.25 days (ERA5 macroclimate 
aggregated to monthly, Table  S3). Given that 75% of all individual 
D. platura and D. radicum emerged within windows of just 22.8 and 
15.3 days, respectively, predictions from temperature data with low 
proximity and coarse temporal resolution (e.g. monthly WorldClim 
and monthly ERA5) almost entirely missed the emergence event. 
Noteworthy is that even when microclimf predictions were aggre-
gated to monthly resolution, they yielded more accurate emergence 
predictions than WorldClim disaggregated to daily, and were com-
parable in performance to hourly ERA5. These findings suggest that, 
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8 of 16  |     KLINGES et al.

for this system, the proximity of climate data may be more important 
than their temporal resolution.

Several mechanisms might explain why climate data of both 
high temporal resolution and high proximity accurately predict 
ecological time series. First, given that many ecological responses 
to temperature are nonlinear, the mean ecological response to ther-
mal variation over time (what is typically of interest) does not 
necessarily equal the ecological response to the mean tempera-
ture (Martin & Huey, 2008). This mathematical principle, known as 
Jensen's inequality, explains why the predicted emergence rates 
in response to coarse temporal data (e.g. monthly WorldClim and 
ERA5) differed considerably from average true emergence rates, 
which are likely sensitive to short-term fluctuations in tempera-
ture (e.g. across hours; Denny, 2019).

Second, individual organisms are exposed not only to instan-
taneous temperature but also to cumulative thermal variation at 

the scale of hours to months and beyond (Kefford et  al.,  2022). 
Even if differences between climate products are minimal at any 
given timestep (Figure  4a), small thermal deviations accumulate 
over time (e.g. divergence in GDDs, Figure  4b), rendering distal 
macroclimate unsuitable for capturing the collective climate ex-
posure of organisms and their phenological responses (Figure 4c). 
Only proximal climate data of fine temporal resolution will ade-
quately capture the cumulative effect of such intraseasonal vari-
ability. Yet, temporal variation can be irrelevant when the climate 
data are not proximal to the ecological responses of interest. 
Therefore, distal, yet fine temporal resolution, climate data may 
have a low ‘signal-to-noise’ ratio. Increasing proximity entails rep-
resenting ecologically relevant climate variation (i.e. signal), while 
increasing resolution of distal climate data can introduce irrele-
vant climate variation (i.e. noise; for instance, the hot extreme air 
temperature of hourly free-air macroclimate that is not relevant to 

F I G U R E  3 Comparison of temperature predictions from ERA5, WorldClim and microclimf using empirical temperature measurements 
from in situ loggers. (a–f) panels display time series from six example locations (from 371 in total) representing different vegetation 
categories from four continents (see Figure S1 for all locations). Vegetation categories are 2015 estimates from the Copernicus Global Land 
Service Land Cover product. Black lines indicate empirical observations of soil temperature, coloured lines indicate temperature predictions 
from each temperature product. (g–i) scatter plots of the root mean square error (RMSE) between predictions from each temperature 
product and empirical temperature data (RMSE calculated from monthly resolution predictions for comparisons against WorldClim, and 
hourly resolution predictions for the ERA5-microclimf comparison). Each point corresponds to RMSE from measurements of one logger 
during 1 year, and black lines represent the lines of equality (equal error between the two temperature products). The microclimf model 
performed best (lowest RMSE), followed by ERA5 and then WorldClim (also see Table S2).
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    |  9 of 16KLINGES et al.

a fossorial organism; see also Dillon et al., 2016). This may explain 
why WorldClim disaggregated to daily intervals performed worse 
than monthly microclimf predictions.

4.2  |  Modelling spatial ecological processes

In our second case study, we illustrated that the method by which 
climate data are summarized from a time series and mapped into a 
single spatial index may either enhance or mitigate the variability 
and utility, of fine-resolution proximal data. For the tropical region 
of Sabah in Malaysian Borneo, microclimate and macroclimate prod-
ucts yielded similar spatial distributions of mean annual tempera-
tures (BIO1, Figure  5a), which may lead the modeller to conclude 
that microclimates reflect macroclimate in this region. However, 
when we calculated the maximum temperature of the warmest 
month (BIO5, Figure 5b) from each temperature product, there were 
larger differences in spatial profiles than for BIO1. Furthermore, 
when we calculated temperature-sensitive fecundity rates of A. ae-
gypti, microclimate-derived estimates diverged considerably from 
macroclimate-derived estimates, and were more accurate (Figure 5c). 
Of note is that even microclimate still underpredicted mosquito fe-
cundity, perhaps because microclimf predictions were imperfect at 
representing conditions of both airborne adult mosquitoes and wa-
terborne larvae. Given that Aedes mosquitoes are sensitive to micro-
climatic gradients across land uses (Saager et al., 2023) and respond 

to temperature in a nonlinear fashion (Kearney et al., 2009), spatial 
and temporal patterns of thermal suitability for this species are likely 
more complex than what a simple annual mean (BIO1) can capture 
(see also Jensen's inequality as described above). Our results, there-
fore, showcase the importance of carefully selecting bioclimatic var-
iables deemed most relevant to the ecological response in question.

Many species distribution models (SDMs) use climate data that 
have been aggregated into a set of particular bioclimatic variables 
(BIO1–BIO19), first established by Nix (1986) and adopted in many 
commendable climate databases (Fick & Hijmans,  2017; Haesen 
et al., 2023; Karger et al., 2017). These sets of bioclimatic variables 
are convenient as (1) they are sometimes useful indices for repre-
senting climate suitability, (2) they can match the temporal resolu-
tion of some ecological observations, such as seasonal or annual 
occurrence records and (3) their generality enables standardization 
of methods across species, studies and systems. Yet, the popularity 
of standard bioclimatic variables may also be at their peril, as many 
modellers default to using these same simple approaches rather than 
seek to identify the biophysically relevant exposure that bioclimatic 
variables attempt to represent (Gardner et  al.,  2019). Comparing 
average temperatures (e.g. BIO1) across systems may mask eco-
logically important differences (Körner & Hiltbrunner,  2018); for 
instance, mean annual temperatures may not deviate substantially 
between degraded and unmodified forests, even though thermal 
buffering across the same vegetation gradient is clear when mea-
sured via other indices (De Frenne et al., 2019). Using maps of the 

F I G U R E  4 Case study 1: temperature predictions (a), growing degree days (GDDs, b) and emergence rate predictions (c) for the soil-
dwelling larvae of two crop pest insects in Alberta, Canada, all calculated separately from ERA5, WorldClim and microclimf. GDDs are 
indices for the cumulative sum of temperatures above a minimum (base) temperature for organismal development, and we predicted 
emergence rates using a logistic model driven by GDDs. Black points in panel (c) indicate empirical observations for the two species (no 
empirical data for 10% and 95% emergence for Delia platura). Although all three temperature products had similar temporal patterns in 
temperature (a; average difference in daily means across climate sources = 0.49°C) and growing degree days (b; average difference across 
climate sources = 200.0 GDDs; displayed here are GDDs just for Delia radicum), even such small differences yielded divergent predictions of 
nonlinear biological responses (c; Table S3). High proximity (microclimf) yielded the most accurate biological predictions. See Figure S3 for 
results with temporally aggregated/disaggregated climate data.
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10 of 16  |     KLINGES et al.

annual warmest and coldest temperatures (e.g. BIO5 and BIO6) for 
habitat suitability modelling may also have its caveats: BIO5 and 
BIO6 maps can be sensitive to just the most extreme values, which 
may be anomalous or physiologically inconsequential. If an ecological 
process is sensitive to a particular threshold (e.g. freezing of water 
at 0°C), the extremity of values is trivial if well beyond the thresh-
old value (Buckley, Carrington, et al., 2023). When annual averages, 
extremes or others in the BIO1–BIO19 set do not covary with more 
relevant climatic variables (e.g. hours below freezing), as they often 
do not, relying on such averages or extremes can lead to poor habi-
tat suitability prediction and result in misguided conclusions.

4.3  |  Modelling spatiotemporal ecological  
processes

Most processes in nature vary in space and time and are best mod-
elled as such (Levin, 1992). In our spatiotemporal case study, using 
the highly proximal microclimf microclimate predictions instead of 
ERA5 or WorldClim dramatically improved the explanatory power 
of our models of prevalence shifts of a fossorial salamander species, 
P. jordani (Figure 6). The microclimf-driven statistical model of preva-
lence shifts explained 1.5× more variation than the WorldClim-
driven model, and 3.5× more variation than the ERA5-driven 

F I G U R E  5 Case study 2: estimates of mean annual temperature (BIO1, column a), maximum temperature of the warmest month (BIO5, 
column b) and average fecundity as a metric of thermal performance for Aedes aegypti mosquitoes (column c), derived from ERA5, WorldClim 
and microclimf predictions across Sabah in Malaysian Borneo. Differences in spatial resolution, temporal resolution and proximity can result 
in shifts in thermal profiles (density plots at top), depending on what bioclimatic variable is calculated. Column (a) as an annual average, 
BIO1 was not sensitive to differences in temporal variability between microclimate and macroclimate, and therefore, thermal distributions 
across temperature products were similar (mean overlap = 70.1%). Column (b) maximum temperatures of the warmest month (BIO5) diverge 
more among the three temperature products (mean overlap = 16.9%), with hourly resolution products (ERA5 and microclimf) yielding higher 
warmest extremes than the monthly resolution WorldClim. Column (c) estimates of fecundity rates from a temperature-driven reaction 
norm empirically parameterized for A. aegypti were fairly similar between the two macroclimate products (overlap = 47.2%), but higher and 
more accurate when derived from microclimf microclimate predictions. Dashed grey density plot indicates a distribution generated from 
empirical fecundity measurements, which overlapped more with microclimf predictions (37.8%) than ERA5 (6.1%) or WorldClim (4.9%). 
Averaging climate (e.g. to BIO1) suppresses the variability that characterizes high-resolution or proximal climate data, while biophysically 
informed summaries (e.g. average fecundity from a thermal reaction norm) are more sensitive to such variability, and therefore, result in 
greater divergence between macroclimate and microclimate.
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    |  11 of 16KLINGES et al.

model. Furthermore, microclimf still outperformed WorldClim and 
ERA5 even when at coarser spatial resolution than them (Figure 6c, 
Table S6). Warming rates predicted by the highly proximal microclimf 
model were also slower than those of either ERA5 or WorldClim. 
These results, in tandem, suggest that climate proximity may influ-
ence findings of climate change velocity or its ecological implications: 
coarse-resolution, distal climate data commonly used in macroecol-
ogy may exaggerate predictions of climate change-induced species' 
extinctions and range shifts (Colwell, 2021; Maclean & Early, 2023).

Microclimate data provide several benefits for spatiotempo-
ral analyses, with one benefit concerning drivers of climate, and 
a second concerning how organisms respond to climate. First, the 
relative importance of microclimate-forcing variables changes 
across the same spatial and temporal scales at which most organ-
isms live. For instance, across space, atmospheric turbulence and 
wind speeds drive near-surface temperature in barren environ-
ments but can have a negligible effect on understory tempera-
tures within nearby forests. Across time, soil surface temperatures 

F I G U R E  6 Case study 3: incorporating microclimate results in improved prediction accuracy of spatiotemporal prevalence shifts, as 
indicated by predicted changes in salamander prevalence in Great Smoky Mountains National Park. (a) Estimates of warming (slopes of lines) 
between the 1960s and 1990s were higher for WorldClim (0.597°C per decade) than either ERA5 or microclimf. Furthermore, microclimf—
which predicted topsoil temperatures both below canopies and exposed to full sun, as opposed to just free-air temperatures from ERA5 and 
WorldClim—expressed greater spatial variability in maximum temperature than the macroclimate products. (b) During the same four-decade 
timespan, areas of high salamander prevalence shifted towards higher elevations in the centre of the park (top map). Predictions of changes 
in salamander prevalence from generalized additive models (GAMs) driven by the three temperature products had vastly different patterns, 
with microclimf-driven predictions (bottom map) visually and quantitatively capturing the spatial signal of empirical prevalence shifts (top 
map). (c) The GAM driven by 1-km resolution microclimf predictions performed best as indicated by the proportion of variance explained (R2), 
and this advantage was held by microclimf until spatially aggregated to 10-km resolution.
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12 of 16  |     KLINGES et al.

are largely a function of solar radiation during the day, yet are 
more dependent on cold air drainage and soil composition at night 
(Geiger et  al.,  2009). Such heterogeneous microclimate forcing 
makes it difficult to compress a microclimatic dataset—of suffi-
cient extent and duration to be ecologically relevant—into static 
spatial layers or single time series that adequately represent the 
climate history across an area. Conversely, the forcing of macro-
climate, although complex, primarily operates at scales broader 
than any single organism is normally exposed to. This results in 
spatiotemporally smoother distributions of macroclimate that can 
be summarized to two- or one-dimensional data across kilometres 
and months. Second, organisms directly respond to proximal con-
ditions (microclimates) rather than distal conditions but realized 
exposure to microclimates can change in both space and time. For 
instance, mobile species can move between microclimates to be-
haviourally thermoregulate (Kearney & Porter, 2009). In concreto, 
when the structures of both climate data and ecological models 
are such to allow variability in both space and time, then climate 
data of high proximity will become dramatically more useful for 
accurate ecological predictions.

4.4  |  Leveraging climate data for ecological 
predictions

When generating, accessing or processing climate data, researchers 
should consider not just spatiotemporal resolution, but also climate 
proximity: how well such data represent the conditions that organ-
isms actually experience within their habitats. In our case studies, 
we found that increasing proximity can yield far greater improve-
ments in ecological predictions than increasing either spatial or tem-
poral resolution. Accordingly, a unified definition of ‘microclimate’ 
should be couched in terms of proximity for a given organism or pro-
cess, rather than just the spatial and temporal resolution of climate 
observation or prediction.

Re-evaluating climate scale in this manner questions the use of 
some generic formulations of the relationship between climate and 
ecology as often employed in large-scale biogeographical studies. 
For any individual organism, actual exposure is best represented 
with physiologically informed predictors (Gardner et  al.,  2019). 
Such predictors can range from simple sums of the cumulative time 
beyond a threshold (e.g. the critical thermal maximum), to calcu-
lating average performance based upon a thermal reaction norm 
(Figure  5c), or fully embracing a biophysical model to link energy 
exchange between an organism and its environment to the corre-
sponding physiological impacts (Briscoe et al., 2023). When possi-
ble, employing spatiotemporally explicit data and models will also 
better capture the diverse processes that shape climate and its roles 
in ecology and biogeography, and will best leverage high-resolution 
proximal climate data.

Microclimate datasets and models make different trade-offs 
to represent proximal microclimates that may serve certain appli-
cations better than others. The microclimf model employed here 

spatially predicts subcanopy and soil microclimate in a computation-
ally efficient manner by simplifying treatment of some physical pro-
cesses; NicheMapR (Kearney & Porter, 2017) trades computational 
speed for greater fidelity to physical processes; microclimc (Maclean 
& Klinges, 2021) includes more detail on canopy effects and TrenchR 
(Buckley et al., 2023b) trades complexity for accessibility. Gridded 
microclimate datasets are also becoming increasingly available 
across broad expanses (Haesen et  al.,  2023; Kearney et  al.,  2014; 
Lembrechts et al., 2022). When selecting between models and data-
sets to represent proximal microclimate, we advise ecologists to es-
pecially consider the home range size (for animals), phenology and 
activity windows, and an organism's morphology, all of which deter-
mine climate exposure (Kearney & Porter, 2009; Potter et al., 2013). 
Body size, in particular, can be used to quantitatively define micro-
climates for a given organism (Kearney et al., 2021; Pincebourde & 
Woods,  2020). Using several tools in tandem may also represent 
multi-scale microclimates relevant to a species, such as variable 
tree bark surface temperatures nested within forest understories 
(Pincebourde & Woods, 2020).

Our case studies are inherently limited in scope (e.g. all are ec-
tothermic animals with restricted mobility), as they serve only as 
illustrative examples of several ecoclimatic relationships worth ex-
ploring (phenology, thermal suitability and range shifts). Similar to 
much of the climate change ecology literature, we focused primarily 
on temperature, yet climate consists of many other relevant vari-
ables (Stocker et al., 2014). Furthermore, the spatial resolution of 
climate data explored here matches that of many studies of species' 
distributions, but is coarser than that of data collected in most field-
based ecological studies (Estes et al., 2018). Yet, while increasing 
climate proximity is useful across scales, even down to operative or 
body conditions (including leaf surface or phyllospheric tempera-
tures; Pincebourde & Casas, 2019), finer resolution data can some-
times decrease prediction accuracy due to overfitting or bias from 
a scale mismatch (also see Box 1). We recommend modellers to per-
form scale-of-effect analyses (e.g. van de Pol et  al., 2016), which 
identify the temporal periods and/or spatial extents that are most 
correlated to a chosen ecological response, and therefore do not as-
sume that finer resolution entails higher accuracy. By doing so, one 
may find that the spatiotemporal density of climate measurements 
and estimates may matter less than how those data were collected 
or derived, and how they are integrated into models.

Both climate and its ecological responses are multifaceted 
and scale dependent. Here, we have highlighted some of the in-
adequacies of coarse or even fine-resolution climate data, and 
demonstrate the importance of proximity for spatial, temporal 
and spatiotemporal processes. By redefining climate scale with an 
emphasis on proximity to a target application, we not only bet-
ter distinguish the language used to express climate's impact on 
ecology and improve modelling practices, but also advance theory. 
Considering climate proximity uncovers important mechanisms by 
exploring how climate drives biology through the lens of the or-
ganism itself. Rather than relying on analytical shortcuts that may 
be easily generalizable (e.g. standard bioclimatic variables derived 
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from distal data), it is every ecologist's duty to identify what con-
ditions are most proximal for their study system and species. 
Using available data and tools that measure and model biologically 
relevant climate, ecologists can gain a more refined and process-
focused understanding of global change.
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