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A B S T R A C T

Wireless environmental sensors have become integral tools in environmental and conservation research, offering 
diverse data streams that complement traditional inventory-based surveys. Despite advancements in sensor 
technology, the ad hoc nature of site selection for sensor deployment often limits the potential of collected data. 
Here, we argue for the importance of informed site selection to capture environmental variation effectively. We 
introduce a comprehensive step-by-step practical guide for environmental sensor site selection and network 
deployment, drawing on experiences from diverse geographic locations and focusing specifically on microclimate 
sensors as a representative environmental variable. The workflow integrates Geographic Information Systems 
(GIS) tools, local community-based knowledge, and statistical methods to provide adaptive and iterative 
guidelines for both new and expanded sensor deployments. We demonstrate how the workflow facilitated 
research across three distinct settings: measuring heat waves in urban and rural gardens in Belgium, informing 
plant conservation in arid montane deserts in Oman, and monitoring amphibian distributions in humid forested 
landscapes in Madagascar. To facilitate the workflow’s implementation and reproducibility worldwide, we 
provide a modular software supplement with flexible user input for robust, data-driven and interactive site se
lection. Critically, our workflow underscores the importance of equitable collaboration with local stakeholders, 
addresses challenges in sensor deployment, and offers a practical tool to enhance the effectiveness and efficiency 
of environmental sensing across disciplines including ecology, meteorology, agriculture, and landscape design.

1. Introduction

In recent decades, wireless environmental sensors – any device that 
can automatically collect and store information on its surroundings 
without an external power source – have become a ubiquitous tool in 
environmental and conservation work (Bush et al., 2017; Callebaut 
et al., 2021; Ellis-Soto et al., 2023). Camera traps, soil chemistry kits, 
microclimate loggers, and other technologies provide a diversity of data 
streams that can supplement inventory-based surveys. Decreasing costs, 

improved battery power, and enhanced portability have also made 
deploying sensors in remote locations increasingly feasible, to the 
benefit of many practitioners (Buratti et al., 2009). Yet given that much 
ecological research is primarily focused on particular biological pro
cesses or chosen taxa, the designation of sites for wireless sensing is 
usually ad hoc or post hoc. Sites are chosen based on ease of access, 
“habitat quality” for focal organism(s), and feasibility for biological 
surveys for a particular application (Carvalho et al., 2016; Nuñez-Pen
ichet et al., 2022), with sensors then deployed at those sites to capture 
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conditions that are most proximal to those focal organisms or habitats.
Ad hoc sensor measurements may be useful to understand conditions 

at a given spatial point and to answer initial research questions related 
to organismal ecology or biodiversity. Yet informal approaches to 
selecting sensor sites, such as “tacking on” sensors to locations primarily 
chosen for taxonomic surveys, have consequences that limit the poten
tial of sensor data. First, the drivers of biodiversity in space or time 
(which may have justified site selection) are not always the same drivers 
of environmental patterns, such as microclimate, that a sensor attempts 
to measure (Abrahms et al., 2020). Conventional biological sampling, 
therefore, may not effectively capture the full range of environmental 
variation. Environmental sensor networks and corresponding datasets 
can also have new life cycles beyond a single study, and informed site 
selection is key for making data useful for downstream applications. For 
example, the proliferation of landscape statistics, satellite imagery, and 
corresponding software for merging spatial models with in-situ mea
surements (Bush et al., 2017) has made it increasingly feasible to 
leverage sensor measurements for spatial prediction across a region 
(Haesen et al., 2023) or for forecasting future conditions (Thomas et al., 
2023). Additionally, sensors or their measurements can be incorporated 
into regional, national, or global networks to synthesise insights across 
scales (Lembrechts et al., 2020, 2021). Yet if sensors do not adequately 
sample a region’s heterogeneity, their direct measurements – and 
especially any extrapolated predictions such as forecasts – may lead to 
poorly informed insights or management decisions (Acevedo et al., 
2015).

Furthermore, scientific questions, longevity of research insights, and 
utility of products for real-world applications all rely on equitable 
collaboration between local stakeholders and scientists or managers 
(who may be foreign to the region of interest) (Barot et al., 2019; Brody, 
2003; Trimble and Plummer, 2019). Given that sensors may be deployed 
for extended periods to provide data with broad utility, co-design of site 
selection with stakeholders is especially important. Sensors may be 
aesthetically displeasing or arouse suspicion in natural settings (Carroll 
et al., 2020; Rothrock et al., 2023), or may be at risk of theft (Farris et al., 
2017), all of which provide rationale to not only request permission 
from local communities, but also understand their values.

Since environmental sensors deployed by ecologists are usually 
secondary to biological variables, important considerations such as the 
necessary sensor sample size, deployment locations, and best practices 
to address sensor failure have received little attention in the ecological 
literature. While protocols are dependent on research questions, sensor 
types, and budgetary and temporal constraints, there are general prin
ciples that unify decisions across contexts. Statistical power analyses, 
often forgotten after graduate training, remain useful for estimating 
necessary sample sizes to draw inference on a pattern or process 
(McDonald, 2014). Randomised or stratified site selection (Carvalho 
et al., 2016; Gillespie et al., 2017; Nuñez-Penichet et al., 2022) can 
leverage spatially gridded remote sensing to understand environmental 
heterogeneity across a landscape (Cordell et al., 2017; He et al., 2015), 
leading to more balanced and scientifically representative sampling 
(Chadwick et al., 2020; Lembrechts et al., 2021). Given that most sensor 
deployments are tailored for particular projects or landscapes, insights 
on best practices are rarely published or shared.

Several approaches to optimizing or standardizing sensor networks 
for ecological research have recently been proposed. Piña-Covarrubias 
et al. (2019) developed an approach for optimal acoustic sensor net
works based upon a simulated soundscape derived from a digital terrain 
model, while Nuñez-Penichet et al. (2022) offered a software approach 
to standardize biodiversity inventory via uniform sampling of both 
environmental and geographic space. Both of these works were efforts to 
monitor biodiversity, which calls for different approaches than envi
ronmental variables such as microclimate. Ellis-Soto et al. (2023) review 
practices on animal-mounted climate sensors, which can be useful for 
tracking wildlife-experienced conditions yet at the sacrifice of stan
dardization. Lembrechts et al. (2021) offered a countrywide approach 

for deploying microclimate sensors, yet few researchers have the fiscal 
means for such broad deployment. Other studies (e.g., Greiser et al., 
2018; Kolstela et al., 2024; Senior et al., 2018; Zanchi et al., 2024) have 
monitored microclimate via sensors at landscape scales, yet all ap
proaches are proprietary to target landscapes without means for scaling 
or transferability. To our knowledge there does not exist a generalizable 
workflow with an open-source software implementation for deploying 
landscape-scale environmental sensors for ecologically-relevant moni
toring, and ecologists also stand to benefit from clear guidelines on 
integrating stakeholder input for sensor deployment.

To unify efforts, here we provide a practical and generalised nine- 
step workflow for site selection for environmental sensors (Fig. 1), 
focusing upon microclimate-centred monitoring and drawing upon our 
broad experiences across six continents. For the purposes of this 
manuscript, we define microclimate as the local thermal, hydric, and 
radiative conditions within one metre of the earth’s surface, and/or 
below vegetation, that organisms and ecosystems are exposed to 
(Geiger, 1942). We provide iterative guidelines that are flexible in the 
face of unforeseen events, especially for remote fieldwork for which 
frequent visitation is challenging. We demonstrate the workflow’s 
applicability across broad environmental variation via three case studies 
in highly disparate settings: urban gardens in Belgium, arid and sparsely- 
populated Oman, and humid forest and croplands in Madagascar 
(Fig. 2). To make our workflow reproducible across the planet, we 
provide a modular, documented R code supplement (Fig. S1) (https:// 
github.com/dklinges9/Microclimate-Sensor-Networks). This program 
automatically downloads and processes globally-expansive geospatial 
data to generate coordinates for recommended sensor deployment 
within a user’s region of interest based upon their budget, spatial remote 
sensing grids, and other user inputs. We also discuss common chal
lenges, practices to incorporate local knowledge, and the prospects of 
assimilating our workflow with innovative tools such as Internet of 
Things (IoT) sensing. The workflow and corresponding insights devel
oped here have broad utility for environmental sensing by academic, 
governmental, and local community stakeholders to improve applied 
science, reduce costs, and make fieldwork more productive.

2. Step-by-step workflow: overview and novel contributions

We provide our workflow in nine steps that guide study design, data 
collection, iterative site revisitation, and result communication for 
research using microclimate sensor networks (Fig. 1). The intended 
purpose of this workflow is to identify optimal locations for sensor 
deployment so as to standardize representation across environmental 
multivariate space, which is implemented in a modular fashion via R 
code program. In this program, we quantify environmental space via 
globally-expansive public remote sensing data, and we leverage ordi
nation analyses to identify sensor locations that maximise multivariate 
environmental coverage yet minimise effort (e.g. distance between lo
cations). Our program generates coordinates and visuals for recom
mended sensor deployment within a user’s region of interest based upon 
their budget, spatial remote sensing grids, and other user inputs. Along 
with such software approaches, our written description of the workflow 
also provides guidance on engagement with local stakeholders. Local 
stakeholder input is especially critical for researchers where remote 
sensing is less reliable, such as cloudy areas or at high latitudes, and also 
such engagement can increase usability of management-relevant visuals 
and decision support developed from sensor data (Gerst et al., 2021).

While previous work has provided guidance on developing coun
trywide networks (Lembrechts et al., 2021), our workflow is geared 
towards sensor deployment across landscapes (areas <100 km2), 
although it remains functional at both smaller and wider spatial extents 
given adequate representation and resolution of spatial inputs. Our 
workflow approaches microclimate network design from a practical 
perspective by summarising all steps needed from design to imple
mentation, while confronting site access and feasibility issues. Protocols 
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outlined here focus on decision-making related to sensor deployment 
locations at the plot level (e.g. within a 10 m–30 m footprint). This target 
resolution matches most fine-grain satellite imagery, and is typically 
sufficient for capturing geographical heterogeneity and differences in 
vegetation types (e.g., forest versus grassland). Precise sensor deploy
ment within the 10 m–30 m spatial area can then be defined based on 
context and goals.

2.1. Step 1: project scoping and sensor selection

The first step is to decide the scope of the project, which encompasses 
research question(s), budget, spatial extent, temporal duration, and 
potential stakeholders. Projects may have these components previously 

determined due to funding structures, existing partnerships, and time
lines. For example, a sensor deployment may be part of a broader bio
logical and environmental monitoring agenda with a fixed budget for 
sensors. Project goals, budget, community contacts, and logistical travel 
constraints thus determine the spatial extent and temporal duration. 
Alternatively, if a sensor network is the core focus of a project, the 
spatial scope and sensor data types (e.g., temperature vs. water chem
istry) will inform a necessary budget and identify community stake
holders. Regardless, we emphasise that scientists iteratively fine-tune 
goals and project scope throughout this workflow.

For microclimate sensor deployment, delineating research questions 
entails identifying both the microclimate response variables of interest 
(e.g. temperature, humidity, light availability, soil moisture) and the 

Fig. 1. Visual depiction of our nine-step workflow, grouped in three sections. Project scoping (1), community engagement (2) and identification of key environ
mental drivers (3) should lay the groundwork before the field campaign, while site selection (4), pilot study (5), and design (6) and execution (7) of the field 
campaign form the core of the microclimate monitoring study. After the field campaign, data need to be analysed (8) and results communicated (9). Arrows indicate 
the order of steps, and occasionally include iterating through earlier steps (grey dashed arrows).
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potential sensors to measure them. Which sensor to use is one of the 
most critical decisions to take when establishing an environmental 
monitoring network. While the optimal sensor will differ depending on 
research questions, study system and budget, we summarise a few 
general considerations in Box S1.

Clarifying the scope is important from the beginning, but not every 
component needs to be fully planned at this stage. For example, 
although spatial extent and temporal duration are important to deter
mine early, the spatial and temporal resolution can be decided later 
(Steps 4 and 5).

2.2. Step 2: community engagement

Effective microclimate monitoring often relies on accessing diverse 
microhabitat(s) across a landscape, for which it is important to identify 
and consult local landowners and stakeholders from the outset. This may 
allow for broader land access so as to deploy sensors to better represent 
the study area. Even in cases where relevant land is not legally private, 
community members may attach special or sacred value to certain areas. 
Creating a direct route from data to stakeholders also builds buy-in 
among community members who likely have questions of their own 
about the landscape, and can increase the project’s impact and 
longevity. Through iterative input from stakeholders, researchers can 
better gauge how to display environmental and climate data in useful 
formats for stakeholders (Kenney et al., 2020). Pairing such iteration 
with diagnostic design principles may increase understandability of 
visualisations from climate data (Gerst et al., 2020), which may increase 
appreciation of climate research (Gerst et al., 2021). Relevant commu
nities to involve in a microclimate measurement campaign will vary 
across projects, but guiding principles to consider are land ownership, 
goal alignment, data re-use, and respect for local knowledge (Rothrock 
et al., 2023). To recruit diverse partners with capacity for taking on 
projects, Leone et al. (2023) recommend hosting a multi-round “Request 

for Partnership” call among candidate groups. Community conversa
tions may also foster engagement in data collection, such as through 
citizen science (e.g. garden owners in the Flemish case study below). 
Partnerships will likely include both formal components laid out with 
official organisations and informal components built naturally during 
time spent in community spaces.

Genuine stakeholder engagement often requires flexible timeframes 
and incentive structures. When approaching communities, build upon 
any prior connections made with researchers, which can help build trust. 
Explain the proposed methods and purpose of the project and listen to 
any suggestions to better align the project with community goals. It is 
important at this stage to remain realistic about the project’s impact and 
not overpromise on management or policy ramifications. When situa
tionally appropriate and funding is available, we recommend trans
parent and user-friendly access to data (summaries), and/or financially 
compensating community members for their time spent planning or 
monitoring site deployments. Some groups may be happy to volunteer 
their time, but others will be inconvenienced by contributing towards a 
project that they may never benefit from.

We cannot be exhaustive on the complex but important topic of 
community-engaged research, and instead refer the reader to academic 
literature on the many benefits and pitfalls of this topic (Douglass et al., 
2019; Norström et al., 2020; Sandbrook et al., 2023). We offer further 
insight in the “Co-development across the Workflow with Stakeholders” 
section below.

2.3. Step 3: identify key environmental drivers

After project aims have been delineated and relevant partners have 
been engaged, one should determine the important drivers of the 
microclimatic variables of interest. Spatial data on these drivers will 
serve as input for the location selection algorithm (Step 4). Many 
foundational texts have identified and reviewed the most important 

Fig. 2. The three case study regions in which the sensor network implementation workflow was applied. Insets depict each landscape and a topographical model of 
each region, with black points indicating where microclimate sensors were deployed. Background global map of mean annual soil temperature from Lembrechts 
et al. (2022a).
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drivers of microclimate (Bramer et al., 2018; Geiger, 1942, De Frenne 
et al., 2021), which we will only briefly summarise here.

Broadly speaking, microclimate is influenced by local-scale variation 
in vegetation, terrain, and soil conditions (Geiger, 1942), which should 
be captured through appropriately chosen sensor locations. Importantly, 
drivers of microclimate will not play equal roles across all ecosystems 
and applications. Furthermore, interactions between drivers are often 
landscape-specific. For instance, the importance of vegetation cover 
depends on the topographic complexity of the region. Our code sup
plement automatically downloads and processes public, free, and 
globally-expansive spatial data that provide measurements or pre
dictions for many relevant microclimate drivers: macroclimate, eleva
tion, slope, aspect, soil temperatures, and categorical land cover 
(Table S2). Our code supplement standardizes projections, resolutions, 
and extents of these layers to suit the requests of users (e.g. based upon a 
user-specified coordinate system and the user’s target region).

Just as important as collating spatial data is identifying which pri
ority environmental variables are not represented by publicly available 
gridded data. Local land management zoning, for example, may not be 
readily available online, and either may need to be manually digitised 
(e.g. from paper or PDF maps), collected during site visitations, or ob
tained from relevant stakeholders. Our code supplement allows users to 
input custom digitised maps to supplement default environmental 
layers. Certain spatial information may also be sensitive or personal (e.g. 
household locations or observations of species threatened by poaching), 
and care should be taken to maintain confidentiality where necessary. 
Given the many sources of relevant spatial information, we recommend 
prioritising 3–10 potential drivers, for the sake of pragmatism, parsi
mony, and reproducibility. While our code supplement can not perform 
driver selection for you (this depends on knowledge of the landscape), it 
does provide statistical power analyses to aid decision making: calcu
lating the number of sensors needed to effectively capture variation in a 
set number of microclimate drivers given an estimated effect size, or 
calculating the number of drivers for which variation can be explained 
by a set number of sensors. Thus, this step is completed once both sensor 
quantity and the set of chosen relevant drivers are established.

2.4. Step 4: sensor site selection

Once the sensor count is defined, it is time to designate sensor lo
cations within the landscape. Focusing solely on physical space for site 
selection may not optimally capture the non-uniform distributions of 
microclimate within a landscape, hence our code supplement provides a 
more effective strategy that includes the important drivers of microcli
mate as automatically provided via the code supplement and described 
in Step 3. Here, such downloaded gridded products of microclimate 
drivers serve to quantify multivariate environmental space, and are used 
as inputs to one of two ordination algorithms: principal component 
analysis (PCA) for continuous input layers via stats::prcomp() (R Core 
Team, 2024), or factor analysis for a mix of continuous and categorical 
input data via FactoMineR::FAMD() (Lê et al., 2008). The use of PCA or 
factor analysis is automatically determined from the user’s spatial 
layers. This ordination creates a set of environmental ‘bins’ across 
multiple dimensions, grouping locations with similar environmental 
conditions (and therefore anticipating similar microclimate; Figs. S2- 
S3). The program’s output is then the optimal locations for sensors to 
maximise representation of environmental space across the target 
landscape, with the total number of locations designated by the user. By 
evenly distributing sensors across these bins, sampling can maximise 
microclimate coverage with a limited number of sensors, and also re
duces dependency on any given sensor (important if the likelihood of 
sensor failure is high). Our code supplement is highly flexible, allowing 
the user to designate only specific eligible locations (e.g. if just one 
habitat type is of interest), and with the option to incorporate pre- 
existing sites so that new selected sites are sampled within comple
mentary environmental space. To provide backup locations if certain 

sites are deemed inaccessible or invalid upon first visit, our program also 
allows for an iterative approach of providing new sensor locations to 
replace invalid sites (see Step 8).

The distance between chosen sites may be important for ecological or 
logistical reasons. In addition to selecting sites based upon environ
mental variation, the code supplement provides functionality to set a 
minimum distance between all sites (if spatially extensive sampling is 
desired) and to set a maximum distance between each site and the 
nearest site (i.e. to facilitate multi-site access). For pre-defined budgets 
in which a per-sensor cost is provided, the analysis determines the 
maximum number of sensors that can be purchased, and thus how much 
environmental variation one can sample. Conversely, when budget 
flexibility exists, the program will suggest an ideal number of sensors 
(minimum sensors to achieve statistical power).

2.5. Step 5: data collection pilot study

When establishing an entirely new sensor network, conducting a 
pilot study to verify that chosen sensors, accessory equipment, and 
deployment protocols are all functional and interoperable is recom
mended. We advise using such a pilot to identify the appropriate choice 
of sensor housing and shielding, which can have tremendous impacts on 
microclimate observations (Terando et al., 2017). Furthermore, testing 
deployment and data harvesting protocols can help calculate the time 
needed for field installation and reduce the risk of misconfigurations. A 
pilot study also tests if the sensor and its data follow the expectations 
shaped in Step 1.

Other considerations during a pilot include site access and sensor 
longevity in the field. For fieldwork in rugged terrain or requiring long 
distances hiked by foot, calculating total weight per site (sensor and all 
accessory equipment) can be useful for feasible deployment. For long- 
term deployment, water- and heat/cold-proofing is especially crucial, 
as proprietary casing of a sensor may not be sufficient to survive adverse 
weather events (Mickley et al., 2019), and both wild and domesticated 
animals can cause severe damage to sensors (Wild et al., 2019). Battery 
life and durability are critical concerns, as a dead battery can potentially 
corrupt prior data. If potentially restrictive, we recommend testing 
battery lifetimes (which may be less than marketed lifetimes) within 
simulated field conditions before deployment. Battery lifetime may be 
sensitive to the temporal interval of data collection, and therefore a pilot 
study and considerations about the minimum temporal resolution 
required for the question at hand can inform the ideal trade-off between 
temporal resolution and span of deployment before battery failure. We 
encourage temporal sampling of no coarser than every two hours, as 
microclimate relevant for most organisms varies at the hourly scale 
(Maclean et al., 2021). Measuring battery life can inform the timing of 
revisits to field sites, and some IoT sensor networks also can provide 
real-time metadata on battery status (Callebaut et al., 2021; and see “IoT 
as the Future of Sensor Networks” below).

2.6. Step 6: design of field campaign(s) and survey protocol

With sensor locations established in Step 4, field campaigns for 
sensor installation, check-ups, data retrieval, and metadata collection 
can be designed. When local partners (e.g., site managers) or citizens are 
involved in sensor installation, researchers must take measures to 
facilitate this procedure. This includes providing appropriate installa
tion instructions and/or information sessions, transporting sensors to 
local partners (which may include logistical challenges associated with 
delivery companies, transport of batteries, and import fees), and 
communicating timelines to all partners. When these decisions have 
been made, formalising a memorandum of understanding (MoU) sum
marising project goals, expectations, and protocols among partners en
sures aligned expectations. This involves delineating financial 
responsibilities (e.g. who is in charge of sensor purchase and replace
ment, and potential stakeholder compensation?), work divisions (who is 
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in charge of sensor installation, retrieval, data analysis?), and commu
nication protocols (which outcomes will be communicated to whom, 
when, and by whom?). This pivotal phase marks the realignment of 
project scope, resources, and collaborative commitments in harmony 
with refined insights and goals.

2.7. Step 7: conduct field campaign(s)

Of the many steps likely needed during a field campaign to fulfil 
one’s research goals, here we focus on those most pertinent to deploying 
sensors and updating site selection. Sufficient documentation of sensor 
locations should be made during the field campaign; coordinates esti
mated by a handheld GPS or smartphone are critical, yet serve as a bare 
minimum. Additional steps to aid sensor retrieval include written notes 
on sensor height/depth and orientation, as well as photographs of exact 
sensor location from different distances away and angles of approach. 
Depending on human and animal threats to sensors (e.g. theft, tram
pling, etc.), consider flagging sensors with visible ribbon, locking sen
sors to sturdy objects, or caging/camouflaging sensors for protection. 
Finally, it is wise to record the time when the sensor was turned on and 
fully deployed, so that any data recorded during transit can be later 
deleted.

Almost inevitably, plans will require reconsideration when con
fronted with the realities of new sites and sensor deployments. We 
therefore encourage an iterative approach to sensor site selection, as 
implemented in our code supplement. This program updates sites of yet- 
to-be deployed sensors according to new information gathered on-the- 
fly during fieldwork. If a subset of algorithm-selected points are 
deemed inaccessible or inappropriate upon site visit, the user can pro
vide a simple CSV to the program with a list of points that remain 
eligible. The algorithm will then choose new points that complement the 
sampled environmental space of established sites. This procedure can be 
iterated until all points have been visited and confirmed as viable 
deployment locations.

This iterative approach requires access to a computer. Although we 
were able to implement such an approach with personal laptops in our 
case studies, two of which are off-grid and remote (Madagascar and 
Oman), we recognize that this may not be feasible or recommended for 
all projects. We have therefore designed the code supplement to be 
intuitive for a wide audience, so that the program could be run by off- 
site collaborators, requiring only a simple spreadsheet of eligible 
points for an additional selection iteration.

2.8. Step 8: data analysis, visualisation, and documentation

Several methods and tools available using the R programming lan
guage and Python environment may be useful for processing and ana
lysing microclimate sensor time series. The package myClim (Man et al., 
2023) can process observations from TOMST and Onset HOBO loggers, 
and routines can be easily customized to support Lascar, iButton, and 
Logtag measurements. myClim allows data cleaning, homogenising, and 
checking for potential errors. Similarly, MetObs is a Python toolkit for 
quality control and curation of in-situ meteorological observations 
(Vergauwen et al., 2024). For constructing continuous thermal regimes 
from temporally sparse measurements, we highlight the sinc package 
(von Schmalensee, 2023), and the Python package Darts (Herzen et al., 
2022) provides tools to fit time series models and forecasts. The package 
climwin (Bailey and van de Pol, 2016) can help identify the temporal 
windows (e.g. end of winter, or height of rainy season), for a given 
measured climate variable, that are the most important for explaining 
variation in a specified ecological response variable. Our code supple
ment automatically provides users with several sets of visuals that 
contextualise sensor deployment locations within spatial and environ
mental variation, including maps of sensor locations with different 
environmental conditions as base layers, histograms of sampled envi
ronmental variation overlaid on total environmental variation, and the 

areas of multivariate environmental space represented by chosen sites 
(Figs. 3–5, S2-S5). These visuals aid communication of final sensor lo
cations to project partners, which should be supplemented with written 
descriptions of locations.

2.9. Step 9: communicate results

While communication with various stakeholders and the broader 
scientific community will occur throughout a project, it is important to 
deliberately inform partners of the results at the completion of key 
milestones. Beyond interacting with the research community through 
scientific papers and conference talks, local stakeholders will likely 
warrant different forms of communication, and it is imperative to re- 
engage them even if their involvement may have ended. Integrating 
conversations into existing community forums or demonstration work
shops can encourage participation and local buy-in, though care must be 
taken to repackage materials into accessible language and graphics to 
promote accessibility and outcomes that are beneficial both for re
searchers and stakeholders (Figs. 3–5; Douglass et al., 2019). Such 
gatherings can also provide opportunities to explore future projects 
together. Beyond in-person meetings, consider disseminating project 
results to local news outlets or making them freely available online (see 
Belgian case study below). Communication outside of typical academic 
routes can have great benefits for both the research team, who build 
closer ties with local partners, and the broader scientific community, 
which can better align research with issues of public importance.

While this step is presented last, it should occur throughout project 
development. Continuous communication brings scientific findings to 
the relevant audience and is especially powerful when data can be 
transferred in (quasi-)real time. This allows timely communication on 
data streams that may be of urgent need, such as the impact of extreme 
weather events, and can increase the likelihood that relevant actions are 
taken by stakeholders.

3. Case studies implementing workflow

Bold numbers in parentheses indicate the workflow step(s) being 
described.

3.1. Oman

3.1.1. Preparation phase (steps 1–2)
(1) The first case study aimed to describe the microsites, distribution 

and climate sensitivity of plants in the Western Hajar Mountains of 
Oman (Fig. 3; 57.04◦E, 58.08◦E, 22.92◦N, 23.5◦N). The landscape has 
complex geography with high mountain peaks (600 m–3000 m) divided 
by deep, seasonally dry riverbeds, with sparse and scattered grasses, 
shrubs and trees. The climate is extreme with summer temperatures 
reaching >50 ◦C and occasional winter snow on the highest peaks, yet 
minimal rainfall of ~225 mm of rain a year (World Bank Group, 2024). 
Due to complex geography and our pre-existing knowledge that areas in 
the Hajar Mountains are climatically buffered from the extreme climate 
typical of the wider region, we expected microclimate to strongly in
fluence the distribution of montane plants. We recorded vegetation in 
100 m2 plots, alongside microclimate sensors measuring air temperature 
(TC Direct Ultra Fine Wire Type K Thermocouple) and relative humidity 
(Kestrel DROP D2). These sensors had no IoT capability, and therefore 
all data were collected manually by revisiting these sites later. (2) From 
the outset we worked with the Oman Botanic Garden field botany team, 
who provided expert local knowledge, assistance with field surveys and 
steered research aims. They confirmed that the basic ecology and dis
tribution of many of the plants in the Hajar is poorly known, which 
makes their conservation challenging. Therefore we aimed to measure 
the microclimatic niches these plants occupied, to guide ex-situ culti
vation and construct species distribution models to better target surveys, 
designate protected areas and predict the effects of climate change. The 
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Omani team highlighted the need to consider the role of humidity in 
shaping microclimate variation and species’ distributions, because 
occult precipitation (condensing water vapour) is the primary moisture 
source in coastal arid regions of Oman, and is not quantified in remote- 
sensed precipitation layers. Local insight was also crucial to avoiding 
military exclusion zones and ensuring safe import of sensors into the 
country.

3.1.2. Location selection, field trial and measurement campaign (steps 3–7)
(3&4) Plot sites were initially chosen based on a precursor to the 

code supplement, employing topographic, vegetation cover, macro
climate (temperature and humidity), and solar constant, as locally 
important microclimatic drivers. Plots were distributed randomly 
throughout the microclimate bands identified during the ordination 
process. We included redundant plots within each band, in anticipation 
that some plots would be inaccessible due to unmapped cliffs and ra
vines. (5–7) Data were collected in 160 plots using the mobile app 
ArcGIS Survey123, which allowed direct upload of GPS position and 
uploaded data to cloud storage, as well as ArcGIS Field Maps, which 
allowed survey maps to be checked easily in the field. Even with 

Fig. 3. Data visualisations for both internal review by project researchers and to communicate results to local stakeholders, here in the Western Hajar central massif 
of Oman. Left: the code supplement auto-generates maps of sensor locations with each environmental layer in the background, here as a map of topographic slope. 
Right: to address the interests in identifying microclimate refugia by the target stakeholder, the Oman Botanic Garden, sensor data are displayed here to demonstrate 
how topsoil temperatures can decouple considerably from macroclimate, for instance depending on microtopography (e.g. sun-baked south-facing slopes).

Fig. 4. Data visualisations for both internal review by project researchers and to communicate results to local stakeholders, here for a landscape of forest and 
croplands in Madagascar. Left: the code supplement auto-generates scatterplots of chosen sensor locations (red points) across different axes of environmental 
variables, such as slope plotted against elevation, both of which were highly variable in this landscape. Right: to explore thermal buffering by canopy cover, displayed 
here are the range of microclimatic temperatures for different land use types for farmers in Madagascar. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)
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partnership knowledge and previous experience in the region, we found 
that travelling to most of the randomised plots was unfeasible. Hence, 
we used ArcGIS Field Maps to identify alternative accessible areas for 
each band, within which we aimed to measure at least 10 plots to ensure 
that plots were still representative of the full range of microclimatic 
variables across the landscape.

3.1.3. Data analysis and communication (steps 8–9)
(8) Some logger deployments were successful, however not all sen

sors were deployed due to logger battery damage during transit. (9) We 
presented preliminary findings in person to the Oman Botanic Garden, 
and have since summarised the results in a Master’s thesis shared with 
the Omani team. We are now in the process of co-designing a national 
Omani microclimate monitoring network with the Oman Botanic 
Garden.

3.2. Madagascar

3.2.1. Preparation phase (steps 1–3)
(1) Our case study in southeastern Madagascar explored how 

microclimate drives reptile and amphibian (herp) diversity and distri
butions (Fig. 4). The region experiences dramatic seasonal rain and 
inclement weather, including frequent cyclones (several during 
deployment). Prior to sensor deployment, we selected a 16-km2 study 
community, Ambalavero, based on its accessibility (a maintained hiking 
trail, as no roads exist in the region) and from observed environmental 
heterogeneity from prior visits (Fig. 2; 47.39◦E, 47.48◦E, 21.53◦S, 
21.47◦S). Ambalavero features rolling hills and cliffs with a mosaic of 
old-growth broadleaf rainforest, patches of selectively-logged native 
forest, smallholder agricultural plots (primarily rice paddy and livestock 
pasture), and “fallow” land of regrowing native and invasive vegetation. 
We monitored air temperature and relative humidity, both near-surface 
and within canopies for forested sites (at least 3 m height). All naviga
tion to and around the landscape was necessarily done by foot. (2) Early 
in project planning, we consulted the local community forest manage
ment organisation (“COBA”) to request permission to access community 
forests, discuss research priorities, and pay permit fees. As some forest 
patches in the region are considered sacred, it was paramount to identify 
where foreign researchers were allowed, and what rituals were neces
sary prior to entering forests. We allocated part of the project budget to 
compensation for landowners whose properties were chosen for sensor 
deployment. Project supervision, design, logistics, and implementation 
occurred over a two-year timeline (one five-month field campaign with 

several shorter field campaigns) to lay groundwork for long-term 
microclimate monitoring. (3) We compiled gridded layers of environ
mental drivers of interest – elevation, slope, aspect, normalised differ
ence vegetation index (NDVI), distance to nearest forest, and categorical 
land cover – that are known drivers of both microclimate and herp 
distributions (Campbell and Norman, 2012; Nowakowski et al., 2017).

3.2.2. Location selection, field trial and measurement campaign (steps 4–7)
(4) The exact budget allocated to sensors was flexible. As a result, we 

used the code supplement to designate the required number of sensors 
that adequately represented environmental variation. Through our al
gorithm, we designated 75 possible locations for sensors. (5) We per
formed ex-situ pilot studies to estimate battery duration and thermal 
accuracy of several microclimate sensor models, including previously 
purchased equipment, through which we chose Onset HOBO Pro and 
Pendant sensors supplemented by several Lascar EL-USB sensors with 
ultra fine-wire thermocouples. None of these sensors included IoT 
communications capability, which would have been a challenge given 
the lack of communications infrastructure at data collection sites, and 
thus all data were collected manually at the end of the study. (6&7) 
When we began deployment, we deemed some sites to be ineligible or 
inaccessible, particularly those on cliff faces. After deploying sensors at 
eligible sites, we used the code supplement to iteratively select new sites 
that best complemented existing deployments (re-running code while 
camping in the field), and with updated criteria (e.g. a threshold of 45◦

slope to avoid cliffs). This resulted in a final set of 54 locations, 19 of 
which had multiple vertical strata. For sites located within community 
forests, coordinates and verbal directions were provided to the COBA 
president. For sites on private property, we greeted landowners (always 
with a team member who resided locally and was familiar with most 
families) and provided an introduction of our backgrounds, research 
aims, and methods. Such in-person consultations were necessary as 
there was no Internet or cell service to contact landowners prior to visit. 
We asked permission of landowners to deploy sensors, and offered 
monthly compensation. We also encouraged landowners to inspect 
sensors periodically, and to notify us of damage or theft. All participants 
responded enthusiastically and most indicated they were proud to take 
part in a community initiative that would encourage future research.

3.2.3. Data analysis and communication (steps 8–9)
In two years of monitoring, two sensors were water damaged, and 

none have been lost or stolen. Microclimate monitoring continues at 
present, and we hold annual meetings with COBA members to provide 

Fig. 5. Data visualisations for both internal review by project researchers and to communicate results to local stakeholders, here for urban and rural gardens in 
Belgium. Left: the code supplement auto-generates histograms of the distribution of selected sites across the distribution of each environmental variable in the 
landscape. Right: to inform and engage the Belgian public, maps of thermal summaries (here, hot extremes) in Belgium that were published in a national newspaper.
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updates on results and to reaffirm land access permission.

3.3. Belgium

3.3.1. Project set-up
CurieuzeNeuzen in de Tuin (CNIDT, ‘Nosy Parkers in the Garden’), as 

described by Lembrechts et al. (2022b), was a large-scale citizen science 
project designed to monitor the impact of extreme weather events on the 
microclimate of private and communal gardens in Flanders, Belgium 
(Fig. 2; Table S1; Bounding Box: 2.11◦E, 6.33◦E, 50.29◦N, 51.62◦N). The 
project served as a vehicle to raise societal awareness on the topic of 
climate change, and to investigate the potential of Flemish (peri-)urban 
nature (covering 12.5 % of the region’s surface area) for climate adap
tation and mitigation strategies.

3.3.2. Preparation phase (steps 1–3)
(1&2) To be sufficiently representative of the variation across 

Flanders and, more importantly, involve a critical mass of the regions’ 
inhabitants, we established an IoT-enabled network across 5000 loca
tions (Fig. 5). For this, the whole community was engaged through 
extensive publicity campaigns through national media, which resulted 
in the sign-up of over 50,000 candidate participants. The IoT- 
connectivity provided through the narrowband-IoT (NB-IoT) protocol 
that leverages the LTE cellular network would enable real-time data 
access, which, in turn, would help stimulate dialogue on localised 
weather impacts at the societal level. The communicative strength of the 
project was enhanced by prioritising communal gardens (e.g., parks, 
schools) in the final selection of participants, and through publicly 
available interactive maps. Given the scale of the envisioned network, 
we made partnerships with academic institutions, civil society (citizen 
scientists, journalists), NGOs (e.g., Natuurpunt), government agencies 
(e.g., the Flemish Environmental Agency), and private partners (e.g., 
cell network provider Orange Belgium). Stakeholder meetings were 
organised regularly to communicate progress made and to exchange 
feedback.

(3) The key environmental drivers of interest were selected based on 
three categories: the degree of urbanity (e.g., imperviousness), the lo
cation’s geographical features (e.g., topography, geographical location), 
and other key drivers of microclimate (e.g., tree coverage, soil). This 
selection balanced high-resolution microclimate (meta)data for 
comparing local management practices with citizen science deployment 
(on their own properties) across the entire region.

3.3.3. Location selection, field trial and measurement campaign (steps 4–7)
(4) Sensor sites were selected based on remote sensing products and 

surveys completed by the more than 50,000 candidate participants upon 
registration. We used the code supplement here to distribute 5000 
sensors according to environmental variation (i.e., the first three com
ponents of a Factor Analysis of Mixed Data, Lê et al., 2008), yet also 
prioritized communal gardens due to their communicative importance. 
At each selected location, a TMS-NB (TMS-4, Wild et al., 2019, with IoT 
connectivity) data logger was installed by a citizen scientist. Each 
participant paid €20 as a commitment fee, which could be reclaimed at 
the end of the project as a voucher, provided adequate completion of 
their measurements. (5–7) Preceding the measurement campaigns, a 
pilot study was conducted in and around the city of Leuven (Belgium) to 
finetune data logger installation for citizen scientists. Although this trial 
did not yet include IoT connectivity, it provided a crucial basis upon 
which the data management pipeline (e.g., data format, error flagging, 
dashboards) of the project was built. After the successful pilot study, the 
full study with 5000 participants took place. The project comprised two 
measurement campaigns (April–October) in 2021 and 2022, a first with 
5000 participants, and a second one with around 3000 participants who 
confirmed their continued interest. This second measurement campaign 
was performed as the first summer was an outlier (record-wet and 
relatively cool). Participants were prompted to complete two surveys, 

conducted in parallel with the microclimate measurements. Given the 
limitations of satellite-derived maps in capturing information on garden 
infrastructure and management, the engagement of citizen scientists 
was crucial for acquiring these data.

3.3.4. Data analysis and communication (steps 8–9)
Data analysis of the real-time data consisted in the first place of 

simple summary statistics (e.g., daily maxima per garden; histograms of 
variation across gardens). During the measurement campaigns, each 
participant had access to these summary statistics via an online dash
board, which they could share freely. Including a national newspaper 
among the project’s stakeholders enabled regular updates of our mea
surements to the general public, highlighting weather extremes that 
occurred during the project. Between measurement campaigns and upon 
completion of the project, each participant was given a personalised 
report. We ended by organising a conference for partners and partici
pants to present two years of microclimate citizen science, including 
testimonials and the main takeaways of the project.

4. Challenges of establishing and managing microclimate 
networks

When establishing and maintaining a microclimate network, various 
obstacles may arise that extend beyond any of the individual steps in the 
workflow described above. Here, we briefly discuss some challenges in 
deploying and operating microclimate networks: (i) the discrepancy 
between the resolution of remotely sensed and microclimate data, (ii) 
the trade-off between project budgeting and the network’s size, and (iii) 
the challenges of maintaining microclimate networks based on citizen 
participation. 

(i) Remotely sensed gridded products are often used as predictors in 
spatial ecology, but are typically of far coarser resolution (1–100 
km) than the scales at which microclimates are generated (1–100 
m; Geiger, 1942). While all remote sensing layers provided as 
inputs in our code supplement have resolutions of 1-km or finer, 
they may not be entirely reliable for capturing true landscape- 
scale environmental variation. While disaggregation and inter
polation (e.g., bilinear, nearest neighbour) are computationally 
feasible, these may only be ecologically relevant if the input 
layers are already relatively fine-scaled and adequately capture 
the key drivers of microclimate (Klinges et al., 2024). A more 
representative solution could be to use gridded products with 
higher resolution to compute new (proxy) covariates. For 
instance, if precipitation or soil moisture data of an appropriate 
resolution are unavailable, high resolution Topographic Wetness 
Index (TWI, representing the likelihood of a given area to be wet; 
Beven and Kirkby, 1979) may be calculated from topographic 
data (e.g. function ̀ .topidx` in microclimf, Maclean, 2023). TWI as 
a fine-scale proxy for soil moisture would improve microclimate 
sensor placement compared to use of coarse soil-moisture or 
precipitation data. Once an initial microclimate network is in 
place, its measurements can also be leveraged for evaluating the 
explanatory power of remote sensing, to inform the next iteration 
of sensor deployments. Here, one can compare microclimate 
measurements from sensors deployed within similar conditions as 
quantified by spatial inputs (i.e. sensors placed within the same 
environmental ‘bin’ by the code supplement, Step 4, Figs. S2-S3); 
similar microclimate measurements between these sensors would 
suggest current spatial inputs are satisfactory, while divergent 
measurements suggests important environmental variation has 
been left unexplained by current inputs. Ultimately, the impor
tance of some microclimate drivers may remain partially un
known until sensors are deployed, again pointing to the value of 
pilot studies and iterative deployments.
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(ii) A typical challenge lies in balancing resources within a project’s 
budget. Given the auxiliary expenses that may arise beyond 
sensor purchases – including compensating stakeholders and 
landowners for their invested time when appropriate, as we 
advocate for – we encourage researchers to keep project scopes 
modest for a first sensor implementation, especially concerning 
the spatial extent. While some researchers may be tempted to 
cover a large area, including moving individual sensors across 
multiple locations, we encourage in most cases continuous mea
surements at fewer sites to prioritise quality over quantity. 
Sampling realistically-sized landscapes also facilitates sensor re
visits, which is typically needed to monitor sensor (mal)function 
and for data downloading (but see “IoT as the Future of Sensor 
Networks” below). Maintaining realism early in study design 
provides greater flexibility in the later stages that we describe, 
therefore enabling data re-use and upwards scaling.

(iii) In recent years, citizen science has received growing recognition 
for large-scale data collection and science communication 
(Dickinson et al., 2010), but this comes at the cost of increased 
complexity. Measurement devices need to be distributed among 
participating citizens, who need to be trained to collect the 
required measurements. Ensuring a network’s longevity entails 
frequent rounds of stakeholder communication and feedback. 
Even if participants are properly trained, citizen-obtained data 
may be more prone to measurement errors, demanding a strong 
quality assurance workflow.

5. Co-development with Stakeholders across the workflow

Given that microclimate by definition changes across local spatial 
scales, access to and intimate knowledge of landscapes is important for 
understanding microclimate variation. Whether through working with 
land management organisations, local governments, Indigenous com
munities, or other stakeholders, grounding microclimate research in 
local understanding better ensures its continued relevance and impact 
(Barot et al., 2019; Brody, 2003; Trimble and Plummer, 2019). Drawing 
from other disciplines such as sociology and implementation science, 
ecologists measuring microclimate can meaningfully engage with com
munities when establishing sensor networks (Shinde et al., 2023). This 
section briefly explores the benefits, grounded in the case studies, of 
local stakeholder engagement to microclimate data collection before 
referencing the CARE principles as a framework for healthy engagement 
with locals.

Respectful stakeholder engagement can improve the quality, scale, 
and impact of data collection. In our Madagascar case study, every 
sensor had a local community member who was provided with a stipend 
to regularly check for sensor damage or failure. In addition to the direct 
benefits of data continuity and status information, this also nurtured 
relationships with locals who provided insight into sage and accessible 
deployment locations and reduced the likelihood of damage and theft. 
The Belgian case study was predicated on local hosts deploying sensors 
in their gardens. The team developed accessible multimedia represen
tations of the collected data to show the impact of urban heat waves and 
drought. This communication method simultaneously shows the public 
the positive impact of their actions, making them more likely to 
participate in future campaigns (Golumbic et al., 2020), while avoiding 
the historical pitfall of community members feeling exploited when they 
do not see or understand the outcome of their labor (Dogan and Wood, 
2023).

Co-development with stakeholders can also address power imbal
ances that have prevented local and global communities from fully 
benefiting from research findings. When external researchers do not 
consult local communities and scientists, particularly those of margin
alised identities, environmental data collection emulates earlier ex
tractions of raw materials (Baker et al., 2019). Frameworks to safeguard 
community data, such as the CARE principles for Indigenous data 

governance (Carroll et al., 2020), aim to prevent these and other 
extractive practices, for example by promoting the collective benefit 
from gathered data and establishing early on who has the authority to 
control the data. By integrating local community members into all stages 
of environmental sensor study design, researchers avoid blindspots, 
achieve more equitable outcomes, and can generate more impactful 
research (Reid et al., 2021).

6. IoT as the future of sensor networks

The methodology we provide here remains useful as sensor tech
nologies advance in the future, such as with the increasing adoption of 
Internet of Things (IoT). Importantly, IoT-connected sensors would in 
many ways facilitate the implementation and especially maintenance of 
sensor networks. Only the Belgium case study leveraged IoT, using the 
LTE cellular network in Flanders to upload sensor data and status in
formation in real time. The other two case studies would have benefited 
from connectivity but were limited by power, cost, complexity, and the 
lack of existing communications infrastructure.

IoT-connected sensor networks enable continuous sensor perfor
mance monitoring, reducing the number of field visits and minimising 
data loss from malfunctions. Moreover, real-time data transfer acceler
ates data analysis, shifting the focus from microclimate (long-term) to 
microweather (short-term) monitoring. Timely data access is invaluable 
for understanding extreme weather events’ impact on ecology and 
hastens communication with stakeholders. This rapid information 
dissemination enhances public understanding, informs decision-making, 
and expedites necessary management interventions – critical impera
tives in an era marked by unprecedented climate change.

Additionally, IoT sensing can provide metadata, such as battery level 
and network connectivity, to minimise wasted time in the field and open 
up opportunities for adaptive sensing. Such additional metadata facili
tates improvements to sensor design and intercomparison of methods 
and findings across networks. Upscaled insights can then guide the 
establishment of regional microclimate networks as part of global 
microclimate measurement campaigns.

Pioneering initiatives with IoT-sensors, like the Flemish case study 
mentioned above, are already underway. However, while manuals for 
developing IoT sensors are available (e.g., Mickley et al., 2019), ecolo
gists still lack commercially available, low-cost sensors with IoT- 
connection. This advancement is a crucial step towards creating a 
comprehensive network of ‘microweather stations’ worldwide, much 
like the standardised weather station network currently in place but, 
ideally, with locations informed by environmental variables rather than 
administrative boundaries and socioeconomics (Lembrechts et al., 
2021). Several wireless technologies and protocols, including LoRaWAN 
(Avila-Campos et al., 2019), SigFox (Joris et al., 2019), and 4G cellular 
networks (Wang et al., 2019), have achieved widespread use for IoT 
applications in geographies and at scales similar to the provided case 
studies where sensors are spread out from other infrastructure by 10s to 
100 s of meters. LoRa and SigFox have the advantage of ultra-low power 
consumption and lower cost hardware and minimal or no subscription 
fees, but 4G network technologies such as NB-IoT, which the Belgium 
case study used, do not require the user to deploy their own communi
cations infrastructure “backbone” in many urban and semi-urban set
tings (Pieters et al., 2021). Other common IoT protocols including WiFi, 
Bluetooth, ZigBee may not be suitable for many environmental sensing 
applications due to their short communications range typically well 
below 100 m (Al-Sarawi et al., 2017). Continuing to develop and inte
grate these technologies towards environmental sensing applications 
remains vital for evaluating microclimate’s role in ecological processes 
amid a changing climate and integrating local measurements into global 
intercomparisons.
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7. Applying the workflow to other environmental sensing

While our focus has been on microclimate monitoring, the principles 
and solutions discussed here are relevant across a spectrum of envi
ronmental variables that vary significantly across small spatial extents, 
from air and water quality to noise pollution. Implementing networks 
for other variables would likewise entail many of the approaches we 
highlight above.

In any case it is critical to identify the key drivers (natural and social) 
of spatiotemporal variation in the environmental variable of interest. 
For instance, creating a monitoring network for chemical pollution ne
cessitates consideration of the specific chemical types, spatial and 
temporal distribution of pollutant sources, and the environmental 
spread rate (Artiola and Brusseau, 2019). Our program, which currently 
relies heavily on remote sensing data, might not be sufficiently accurate 
to capture such variables in detail, and local knowledge may need to 
inform the spatiotemporal configuration of the monitoring campaign. 
Similarly, when addressing noise pollution and its effects on human 
well-being, subjective experiences play a pivotal role, often diverging 
from objective decibel measurements (Murphy and King, 2022). In such 
scenarios, a deeper understanding of human stakeholders’ perceptions 
becomes essential to align monitored sound levels with their lived re
ality. Despite these potential variations, our methodical approach – 
engaging stakeholders, identifying driving factors, and leveraging them 
for selecting measurement locations – promises to be advantageous 
across almost all environmental applications.

8. Synthesis and conclusion

The increased availability of small, low-cost and wireless environ
mental sensors has revolutionised ecological research and conservation 
efforts, enabling autonomous data collection across many study sites. 
Despite this advancement, ad hoc approaches to selecting deployment 
sites and measurement methodologies have constrained the full poten
tial of sensor data in applied ecological contexts. While resources and 
robust methodologies exist for guiding site selection from the perspec
tive of biodiversity surveys (e.g., Carvalho et al., 2016), there is a 
notable scarcity of guidelines specifically tailored to inform the strategic 
placement of sensors to monitor key environmental variables 
(Lembrechts et al., 2021).

Our paper addresses this gap by providing a practical workflow for 
microclimate sensor networks from conception to execution to dissem
ination, promoting improved standardization in environmental moni
toring across studies. Crucially, our workflow emphasises effective 
communication and collaboration with stakeholders, fostering owner
ship and support among researchers, policymakers, and community 
members. This collaborative approach is vital for translating sensor data 
into actionable, applied insights that inform evidence-based policies and 
practices for managing anthropogenic stressors, such as habitat loss, 
ecosystem degradation, climate change, and overexploitation. Our 
workflow can be applied for improved study of urban heat islands, 
thermal and hydric stress of crop plants, and monitoring thermoregu
latory behavior within animal home ranges, as several use cases. By 
following our systematic approach, researchers can ensure that sensor 
deployment is well-informed, scientifically robust, and aligned with 
project and stakeholder goals and budget constraints, ultimately 
enhancing the quality, utility and longevity of environmental sensor 
data with local practitioners in mind.
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