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• Temperature differences inside vs. out-
side forests were mapped across the
globe.

• Forest canopies buffer minimum (Tmin),
mean (Tmean) and maximum (Tmax)
temperatures.

• In the future, buffering for Tmean and
Tmax may increase, but may decrease
for Tmin.

• Refugial capacity of forests might last
longer than anticipated in a warming
world.
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future in boreal, temperate and tropical forests. Using linearmixed-effectmodels, we combined a global database
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project future (2060–2080) temperature differences between free-air temperatures and sub-canopy microcli-
mates. For all tested future climate scenarios, we project that the difference betweenmaximum temperatures in-
side and outside forests across the globewill increase (i.e. result in stronger cooling in forests), on average during
2060–2080, by 0.27± 0.16 °C (RCP2.6) and 0.60± 0.14 °C (RCP8.5) due tomacroclimate changes. This suggests
that extremely hot temperatures under forest canopies will, on average, warm less than outside forests as
macroclimate warms. This knowledge is of utmost importance as it suggests that forest microclimates will
warm at a slower rate than non-forested areas, assuming that forest cover is maintained. Species adapted to
colder growing conditions may thus find shelter and survive longer than anticipated at a given forest site. This
highlights the potential role of forests as a whole as microrefugia for biodiversity under future climate change.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Warming temperatures and changing precipitation regimes are
influencing ecosystems across the globe (IPCC, 2018). To date, ecologi-
cal research assessing the impact of anthropogenic climate change has
predominantly relied on macroclimatic data. These data are typically
based on a global network of weather stations established at approxi-
mately 1.5 to 2.0 m above the soil surface in open habitats (e.g. above
short grass) (World Meteorological Organization, 2018). Forest organ-
isms living below andwithin tree canopies, however, experiencemicro-
climatic conditions distinct from those in open habitats (Chen et al.,
1999; De Frenne et al., 2021; Geiger et al., 2009). Below tree canopies,
lower radiation, wind and evapotranspiration rates often translate into
lower temporal variation in air temperature and humidity compared
to open environments (Davis et al., 2019; Geiger et al., 2009; Von Arx
et al., 2013). In particular, temperature extremes are often strongly at-
tenuated in forest interiors, with lower maxima and higher minima
compared to open environments (De Frenne et al., 2019; Li et al.,
2015). Studies have already shown that such microclimatic buffering
can mediate the response of forest communities to climate change (De
Frenne et al., 2013; Dietz et al., 2020; Lenoir et al., 2017; Stevens et al.,
2015; Zellweger et al., 2020). Despite the increasing evidence that eco-
system dynamics and processes are more likely to be related to forest
microclimates than to macroclimate (Chen et al., 2018; De Frenne
et al., 2021; De Smedt et al., 2021; Frey et al., 2016a), microclimates
are still seldom incorporated in ecological research (e.g. in species dis-
tribution models) (Lembrechts et al., 2019) and ignored by dynamic
global vegetation models (DGVMs; e.g. Thrippleton et al., 2016) that
simulate the effects of future climate change on natural vegetation
and its carbon and water cycles. In particular, we do not know how for-
est microclimates will change in the future as macroclimate changes
(Lembrechts and Nijs, 2020).

Advances in studies on the effects of climate change on different or-
ganisms living below or in forest canopies have often been limited by
the availability of suitable microclimatic data (De Frenne et al., 2021).
One robust way to study forest microclimates is to use microclimate
measurements from paired (inside vs. outside forests) sensor networks
to calculate temperature offsets, i.e. the absolute and instantaneous dif-
ference between temperature inside (i.e., microclimate) and free-air
temperatures outside forests (i.e., macroclimate) (sensu De Frenne
et al., 2021). Negative offset values thus reflect cooler and positive off-
sets warmer forest temperatures compared to outside forests. These
empirical offset values for temperature can be related to readily avail-
able environmental data using statistical modelling approaches, and
these models can then be used to interpolate and extrapolate microcli-
mate across entire mapped landscapes (Frey et al., 2016b; Greiser et al.,
2018). Differences betweenmacro- andmicroclimate (i.e., temperature
offsets) result from processes operating at many scales that influence
incoming solar radiation, air mixing, soil properties or evapotranspira-
tion (reviewed in De Frenne et al., 2021). Macroclimatic conditions
(e.g., mean temperature and rainfall), topographic variation in the land-
scape (e.g., elevation and aspect) and variation in canopy cover and veg-
etation height have been reported to be the main drivers of the
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understorey temperatures in forests (De Frenne et al., 2019, 2021;
Greiser et al., 2018; Macek et al., 2019; Zellweger et al., 2019). With
the advent of global forest microclimate data (De Frenne et al., 2019;
Zellweger et al., 2020), this type of modelling now enables the predic-
tion of forest microclimates across forest types under future climate
change.

Here we map forest microclimate temperature offsets based on
(i) paired sensormeasurements below the canopy vs. the open-air tem-
perature at a given site and (ii) landscape- and canopy-scale predictors
throughout the year for the Earth's dominant forested ecosystems
across five continents and at a spatial resolution of ~1 km. More specif-
ically, our objectives were to (1) make predictions for mean, minimum
and maximum temperatures using past macroclimatic data
(1970–2000), and, (2) make projections for temperature offsets for
the future (2060–2080) macroclimatic conditions. We hypothesised
that the buffering capacity of forest canopies results in slower future
warming of forest below-canopy temperatures compared to the
warming observed in standard meteorological weather stations
(macroclimate).

2. Material & methods

2.1. Paired plot data

We used a unique data set with 714 temperature offset data points
involving paired plots from 74 studies spread across 5 continents (Sup-
plementary Material Fig. S1; Data available in De Frenne et al., 2019).
Focus was on air temperature below tree canopies (~72% of observa-
tions) and the temperature of the topsoil (~28%), given their importance
for responses of forest organisms and ecosystem functioning to
macroclimate warming. A key asset of this database is the paired nature
of the data, which always combines below-canopy temperature data at
a given forest site with open-air temperature data from a neighbouring
reference non-forest site. Temperature measurement were performed
by various logger types such as HOBO loggers (~15% of observations),
iButton loggers (~10%), full weather stations (~5%) and various other
logger types (e.g. cylindrical thermistor, Hanna thermohygrometer,
thermocouples, etc.; ~70%). Reference sites were a nearby open site
equipped with the same type of (shielded) temperature loggers (~82%
of observations), a nearby weather station (~14%) (provided the dis-
tance did not conflict with the temperature offset of the canopy,
e.g., due to significant topographic differences) or a logger placed
above the upper canopy surface (~4%). We specifically refrained from
using additional data on forest microclimate conditions that were not
strictly paired with free-air conditions from a neighbouring site using
the exact same design (same sensor, same logger, same shieldingmate-
rial, same height).

The data points were collated from the scientific literature in a sys-
tematic and reproducible manner (see De Frenne et al., 2019 for full de-
tails). Temperature offsets were calculated as the temperature inside
the forest minus the temperature outside the forest, or extracted di-
rectly from the original study; negative values reflect cooler tempera-
tures below tree canopies while positive values reflect warmer
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understorey temperatures. This was done for three temperature re-
sponse variables, i.e. mean,maximum, andminimum temperature (fur-
ther referred to as Tmean, Tmin and Tmax, respectively) that were
computed during a specific time period that could differ between sites
but that was exactly the same between paired sensors installed
outside and inside the forest at a given site. Multiple forest sites (at
least several kilometres apart), seasons (meteorological seasons, later
aggregated to growing versus non-growing season) and temperature
metrics (maximum,mean,minimum, air or soil temperatures) originat-
ing from the same study were entered into different rows of the data-
base but tagged under the same study ID. Temperature values of long
time series were always aggregated per season and/or year, which
means that several temperature values for Tmean, Tmin or Tmax could be
generated for the same study site. Temperature measurements were
classified as having taken place during the growing season, the non-
growing season or throughout the whole year. This classification was
performed on the basis of reported meteorological seasons and/or cli-
mate information in the original study. The dry and winter season
were classified as the non-growing season in tropical and temperate bi-
omes, respectively. Estimates of uncertainty (standard error, standard
deviation, coefficient of variation or confidence intervals) of the temper-
ature measurements were only reported for a small minority (13.6%) of
offset values in the database andwere thus not included in our analyses.
See De Frenne et al. (2019) for more details on the literature search, in-
clusion criteria and the empirical data used in this study.

2.2. Predictor variables

To predict the offsets for the three temperature variables (Tmean,
Tmax, Tmin) across all forests at a global extent, we gathered global
maps of predictor variables related to macroclimate, topography and
forest cover. These three sets of predictor variables were selected
based on their importance for forest microclimate, and on the spatial
resolution and extent of the available data. All the predictor maps we
used are raster maps with a spatial resolution of 30 arcsec (~1 km)
and are available at the global extent (i.e., from 80°N to 56°S in latitude
and from 180°E to 180°W in longitude). Values for all predictor vari-
ables were extracted using the geographical coordinates for each plot
pair.

2.2.1. Macroclimate
Global raster maps of mean, minimum and maximum free-air tem-

perature (°C; Tmacro), on a monthly basis, as well as monthly
precipitation (mm) raster maps, averaged for the climatology
1970–2000, were collected from WorldClim version 2.1 (Fick and
Hijmans, 2017). In addition, we gathered future projections
(2060–2080) for the exact same set of temperature and precipitation
variables described in the previous sentence but based on the contrast-
ing “very stringent” representative concentration pathway (RCP) 2.6
and “worst case”RCP 8.5 from three different general circulationmodels
(GCMs) with minimal interdependency, based on Sanderson et al.
(2015), i.e. HadGEM2-ES, MPI-ESM-LR and MIROC5 (downscaled
CMIP5 data fromWorldClim; 30 arcsec resolution).

2.2.2. Topographic variables and distance to the coast
We gathered six variables related to topography using raster layers

derived from the Global Multi-resolution Terrain Elevation Data 2010
(GMTED2010) dataset at 30 arcsec resolution (Amatulli et al., 2018).
Maps on northness and eastness, elevation (m a.s.l.), elevational varia-
tion (EleVar) and topographic position index (TPI) were collected.
Northness and eastness are the sine of the slope, multiplied by the co-
sine and sine of the aspect, respectively. They provide continuous mea-
sures describing the orientation in combination with the slope (i.e., a
circular variable is transformed into a continuous one, ranging from
−1 to 1). In the Northern Hemisphere, a northness value close to 1 cor-
responds to a northern exposition on a vertical slope (i.e., a slope
3

exposed to very low amount of solar radiation), while a value close to
−1 corresponds to a very steep southern slope, exposed to a high
amount of solar radiation. Aspect values for the Southern Hemisphere
were inverted so that a value of 1 in the Southern Hemisphere also
means very low amount of solar radiation. Variables EleVar (1) and
TPI (2) capture topographic heterogeneity within a 1 km2 grid cell
around each pair of measurements (inside and outside forest): (1) the
standard deviation of elevational values aggregated per 1 km2 grid cell
(further referred to as elevational variation) and (2) the median of the
topographic position index (TPI) values across each 1 km2 grid cell.
The TPI is the difference between the elevation of a focal cell and the
mean elevation of its eight surrounding cells. Positive and negative
values correspond to ridges and valleys, respectively, while zero values
correspond to flat areas (Amatulli et al., 2018).We also produced amap
with the distance from each land pixel to the nearest coastline
(Dist2Coast) using the coastline map data from Natural Earth (free vec-
tor data from naturalearthdata.com).

2.2.3. Forest cover and forest height
We used the tree canopy cover (defined as canopy closure for all

vegetation taller than 5 m in height) map for the year 2000 by Hansen
et al. (2013). This high-resolution global map layer was re-projected
and aggregated from 30 m to 30 arcsec using the average of the aggre-
gated raster cells. This canopy covermap is the only availablemap span-
ning a global extent at this high resolution. By using this data product,
we make the strong assumption that canopy cover at the time of tem-
peraturemeasurements is similar to the cover in the year 2000.We con-
sider this assumption as reasonable as the median year of the
temperature measurements for all data points is approximately 1996
(range between 1943 and 2014). Finally, we used estimates of canopy
height at 1 km resolution derived from the ICESat satellite mission
based on 2005 (Simard et al., 2011).

2.3. Data analysis

All statistical analyses were performed in the open-source statistical
software environment of R, version 4.0.2 (R Core Team, 2021). The tem-
perature offsets for Tmean, Tmax and Tmin were modelled (274, 184 and
202 plot pairs respectively), after removing missing values for sensor
height, i.e. not mentioned in the original study, and data points with
canopy cover zero (based on the tree canopy cover map introduced
above; Hansen et al., 2013) using linear mixed-effect models with ran-
dom intercept (LMMs) (lme4 package; Bates et al., 2015). In our main
models, we combined the seasonal (growing vs. non-growing and an-
nual) time series and performed additional analyses for the different
three different time periods (see further and Supplementary Material
Appendix S2). We included ‘study ID’ as a random intercept term to ac-
count for non-independence between samples within studies. For each
of the three studied response variables, we started ourmodelling proto-
col from the full model:

Toffset � Tmacro þ Precipitationþ Elevationþ Eastnessþ Northness
þ EleVarþ TPIþ Dist2Coastþ Canopy coverþ Forest height
þ Sensor heightþ random effect ‘study ID’

For Tmacro, we used the monthly average for either Tmean, Tmax and
Tmin temperature during the period 1970–2000 depending on the stud-
ied response variable of T offset (Tmean, Tmax or Tmin). Sensor height was
also included in the models (continuous variable, in metres above or
below the soil surface), as this significantly impacts the magnitude of
the temperature offset (De Frenne et al., 2019; Supplementary Fig. S2;
Table S1). Sensor height is positive for aboveground and negative for
belowground sensors. Data points with sensor height > 2 m were
excluded as our aim was to model forest microclimate near the
ground. To avoid collinearity in predictor variables and improve
model performance, we excluded variables that showed a correlation

http://naturalearthdata.com
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r ≥ |0.7| (Pearson's product-moment correlation; Supplementary
Fig. S3) and variance inflation factor ≥ 4 (Zuur et al., 2010). Forest height
was therefore removed from all models due to high correlation with
canopy cover; for Tmean offset, EleVar was also dropped from the
model due to high correlation with TPI. All predictors were
standardized by subtracting the mean and dividing by the standard
deviation prior to modelling. For each response variable, the single
best model was selected based on the Akaike Information Criterion
(AIC) using the automated dredge-function of the package MuMIn
(Barton, 2009). Goodness of fit was calculated following Nakagawa
and Schielzeth (2013).

To test for non-linear relationships, we also used generalized addi-
tive mixed-effect models (GAMMs) (cf. the gamm4 package) (Wood
and Scheipl, 2014) on the same dataset. We applied smoothers to the
same set of fixed-effect terms, included the same random intercept
term ‘study ID’ and followed the same model selection procedure as
for the LMMs. For each of the three studied response variables (Tmean,
Tmax, Tmin) and for each of the two modelling approaches, we
performed a leave-one-out cross validation (LOOcv) and compared
root mean square errors (RMSE) among models (LMMs vs. GAMMs).
We found no difference (t-test, p-value >0.05) in RMSE between
LMMs and GAMMs, justifying our choice of LMMs (see also Supplemen-
tary Fig. S4). Furthermore, we checked spatial autocorrelation in the
model residuals for the LMMs usingMoran ś I-test from the ape package
(Paradis and Schliep, 2019). No spatial autocorrelationwas detected (p-
value>0.05) in themodel residuals. Additionally, we tested the effect of
season of sampling (annual, growing and non-growing season; see
above) on each response variable. We included season as a categorical
variable to the full models described above and followed the same
model selection procedure. However, due to the low number of obser-
vations for each category (but growing season being the dominant cat-
egory), results including season were only included in the
Supplementary Material Appendix S2.

Using the single best LMMs for each of our three response variables,
we made predictions for Tmean, Tmax, and Tmin offsets for forest across
the globe using the collected map data for all predictor variables
retained in the models, setting sensor height to 1.0 m and not
considering variation included in the random intercept. Temperature
offsets were predicted for all raster pixels (30 arcsec resolution) with
canopy cover >50% as this largely concurs with the global distribution
of forest areas in the terrestrial ecoregions map by Olson et al. (2001).
To assess model performance, we performed spatially blocked k-fold
cross-validation (k = 10; folds assigned randomly, with spatial blocks
of size 50 km2; Valavi et al., 2019). Furthermore, we made predictions
of future forest temperature offsets based on the future projections of
temperature and precipitation (the latter only included in the best
model for Tmean and Tmin) from WorldClim (see above). We made
future predictions for the period of 2060–2080 using the RCP 2.6 and
RCP 8.5 projections based on the three selected GCMs to account for un-
certainty related to the GCMs; final model predictions for each RCP sce-
nario were averaged over all GCMs. For the future predictions, we
assumed no change in topography and conservatively assumed no
change in canopy cover as our main goal was to determine direct cli-
mate change effects on temperature offsets below forest canopies if
wemaintain the forest cover. Of course, we could use different scenarios
of future forest cover but we decided to not do that to better assess the
unique effect of future climate change without changing other parame-
ters, such as forest cover, in themodel. Besides, future scenario on forest
cover are not yet available at a global extent and at the spatial resolution
we used here. Uncertainty in predictions was mapped by applying a
bootstrap approach. We resampled the original data used to fit the
models with replacement with total size of the bootstrap samples
equal to the size of the original sample. For each of the temperature re-
sponses, we fitted single best models using 30 bootstrap samples. Using
these 30models, we generated per-pixel standard deviation mapped at
the global extent (Supplementary Fig. S5). To map uncertainty for the
4

future predictions, the same procedure was followed for each of the
three GCMs, i.e. 30 bootstraps per GCM. Furthermore, we provide
maps indicating where the models are extrapolating beyond the values
of data used to fit the models. Predictive performance and uncertainty
mapping were performed considering fixed effects of the models, ex-
cluding uncertainty of the random (study) effects. Predictions were
made using the raster package (Hijmans and van Etten, 2012). Graphical
plots were created using ggplot2 (Wickham, 2016) and Tmap packages
(Tennekes, 2018).

3. Results

Our models predicted an average global offset of −2.92 ± 1.57 °C
(mean ± SD) for Tmax, −0.88 ± 1.82 °C for Tmean, and 0.96 ± 1.27 °C
for Tmin (Figs. 1 and 2). These averages were calculated from all pixels
having at least 50% canopy cover during the year 2000 (Hansen et al.,
2013) and derived from the predictions in Fig. 1. Our predictions show
a slightly positive Tmean offset (i.e. warmer temperatures within the
forest) in boreal forests, becoming overall negative towards the
tropics (i.e. cooler temperatures within tropical forests compared to
free-air temperatures) (left panels Fig. 2). Tmax offsets are negative
across the three biomes (i.e. cooler maximum temperatures within
forests) with the lowest values in the tropics (up to 5 degrees cooler
within forests), whereas Tmin offsets are positive in boreal and
temperate forests and negative in the tropics (Fig. 2). When including
season in the modelling procedure, we found that for Tmean offsets
were lower during the growing season than for the non-growing season
across the three biomes. For Tmax and Tmin, season was not included in
the best model (more detailed results included in Supplementary
Material Appendix S2).

Offsets for Tmax, Tmean and Tmin were negatively affected by free-air,
macroclimate temperatures (Supplementary Fig. S2 and Table S1). For
Tmean and Tmin, we found lower offset values with higher amounts of
precipitation (Supplementary Fig. S2 and Table S1), for Tmean this
indicates stronger buffering (more negative offsets), whereas for Tmin

this means weaker buffering (offsets closer to zero). We found Tmin

offsets to be more positive, i.e. more strongly buffered, in areas with
higher canopy cover, on pole-facing slopes and closer to the coast. The
marginal R2 values (for fixed effects) were 0.29 (0.03 SD), 0.21 (0.03
SD) and 0.25 (0.03 SD), while conditional R2 values (for fixed and ran-
dom effects) reached 0.58 (0.04 SD), 0.60 (0.06 SD) and 0.52 (0.04
SD) for Tmax, Tmean and Tmin, respectively. Root mean square errors
obtained from the spatial cross-validation were 3.67 °C (1.55 SD),
1.78 °C (0.71 SD) and 1.52 °C (0.45 SD) for Tmax, Tmean and Tmin,
respectively. Standard deviations obtained from the bootstrapping
procedure show fair consistency between the predictions of the 30
bootstrapped models (Supplementary Table S2; Figs. S5 and S6).
Upper confidence levels (95%) of standard deviations for all three
responses remained lower that 1 °C (Supplementary Table S2 and
Fig. S6). Higher values were mainly observed in the tropical and
boreal region. We also found higher extrapolation for the predictors
included in the models in tropical forests and especially in the boreal
region (Supplementary Fig. S7).

Our future projections showed an overall decrease in offset values
for all three temperature responses (Fig. 2). For Tmean, future minus
past offsets were − 0.22 ± 0.16 °C (mean + SD) for RCP2.6
and − 0.5 ± 0.22 °C for RCP8.5 (Fig. 2). For Tmax, future minus past
offsets were − 0.27 ± 0.16 °C for RCP2.6 and − 0.60 ± 0.14 °C for
RCP8.5 (i.e. cooler maximum temperatures within forests compared to
outside temperatures in the future). For Tmin, future minus past offsets
were − 0.12 ± 0.18 °C for RCP2.6 and − 0.27 ± 0.24 °C for RCP8.5.
These averages were derived from panels D, E and F in Fig. 1. For both
Tmax and Tmean, this means stronger offsets or buffering (more
negative offsets), whereas for Tmin weaker buffering (offsets closer to
zero). Decreases in Tmin offsets are most pronounced in the boreal and
temperate region (left panels Fig. 2).
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Fig. 2. Left panels: Violin and box plots showing the distribution of predicted below-canopy forest temperature offsets of (A) Tmax, (C) Tmean, and (E) Tmin across boreal, temperate and
tropical forests classified following Olson et al. (2001). Right panels: density plots for the predicted offsets of (B) Tmax, (D) Tmean, and (F) Tmin. Dashed vertical lines represent global
mean offset values for the three temperature responses for past, and the future RCP2.6 and RCP8.5 scenarios. Note that bimodality is observed in the density plots, resulting from the
difference between offsets in temperate and boreal versus tropical forests (see Fig. 1). For all plots, different colours and line types represent predictions for past climatic conditions
(macroclimate temperature and precipitation, grey), for RCP2.6 (orange) and RCP8.5 scenarios (blue). Data points to draw these plots are subsamples (105 pixels) derived from the
global predictions in Fig. 1.
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4. Discussion

Our predictions of temperature offsets for the 1970–2000 climatol-
ogy and for forests having at least 50% tree cover during the year 2000
(Hansen et al., 2013) show that mean temperatures are on average
cooler below canopies (at 1 m height) than in open habitats across all
forested grid cells (De Frenne et al., 2019; Li et al., 2015). Our results
also support the fact that temperature extremes are mainly buffered
6

in forests; Tmax is on average lower inside forests, whereas Tmin is
warmer. Nevertheless, strong biome-specific variation was observed:
while in boreal forests, Tmean offsets were slightly positive, they
became overall negative towards the tropics. Tmax offsets were
negative across the three biomes with the most negative values in the
(warmer) tropics, whereas Tmin offsets were positive in the cooler
boreal and temperate forests, and negative in the warm tropics.
Furthermore, the difference between growing and non-growing season
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on Tmean offsets illustrates the importance of considering the temporal
and seasonal variation in temperature offsets in future research (Li
et al., 2015; Zellweger et al., 2019).

Temperature offsets for all three responses were negatively related
to macroclimate temperatures. This relationship is expected as temper-
ature offsets are directly linked to macroclimate temperatures; if free-
air temperatures rise, offsetswill becomemore negative because thepa-
rameter estimate for Tmacro represents the proportional buffering of
canopies of free-air temperatures. Offsets for Tmean and Tmin were
negatively affected by precipitation. That is, the buffering for Tmax by
canopies was stronger in regions with higher amounts of
precipitation, whereas buffering is lower for Tmin, supporting the
notion that evapotranspiration drives the offset in these conditions
(Davis et al., 2019). The limited role of drivers other than
macroclimate could be because the 30 arcsec (~1 km) spatial
resolution is still too coarse to detect effects of e.g. topography or
canopy cover, drivers acting on a very local scale (Ashcroft and Gollan,
2012; Greiser et al., 2018; Macek et al., 2019).

Our aim was not to produce maps for use, but to give an overview of
how temperature offsets between forest andopenhabitats vary across for-
est biomes and how these relationships can evolve under climate change.
Despite the limitations of the data and the assumptions made, we found
that our models explained a moderately large amount of variation in the
offsets, and considered model accuracy to be fair. Uncertainty in predic-
tions increased towards tropical and boreal forests which is likely caused
by extrapolation outside the environmental range included in our data.
These biomes were underrepresented in the data, hence, future research
should focus on setting out networks of paired temperature sensors in
these regions (Lembrechts et al., 2021b).

Our projections for both the “very stringent” RCP2.6 as well as the
“worst-case” RCP8.5 scenario indicate that buffering by forest canopies
for Tmean and Tmax temperature may increase, but minimum
temperature offsets will decrease, especially in temperate and boreal
regions as ambient temperatures become less cold. This suggests that
under climate change, free-air temperatures are likely to have a
larger-magnitude increase than the corresponding forest microclimate
temperatures, which would reinforce the idea of divergent warming
(decoupling) between macroclimate and microclimate (De Frenne
et al., 2019; Lenoir et al., 2017). Offsets may even become lower
(resulting in increasing or decreasing buffering for Tmean or Tmin,
respectively) despite projected decreases in precipitation in some
regions (Supplementary Fig. S8). It is possible that finer-grained micro-
climatic heterogeneity could buffer the impact of a changing
macroclimate even further (Maclean et al., 2017). This inference relies,
however, on the strong assumption that forest cover and composition
will remain stable in the future. Such stability is however unlikely, as cli-
mate change itself as well as forest management and disturbances can
either increase or decrease forest canopy cover in the future. For exam-
ple, climate change is however likely to cause increased tree mortality
owing to, for instance, repeated and more severe disturbances such as
droughts, fires, pathogens and insect outbreaks (Curtis et al., 2018;
Senf et al., 2021; Senf and Seidl, 2020). The resulting reduction in tree
canopy cover can lead to a sudden loss (i.e. a tipping point) of canopy
buffering and increased microclimate warming (Alkama and Cescatti,
2016; Findell et al., 2017; Lembrechts and Nijs, 2020; Richard et al.,
2021; Zellweger et al., 2020). On the other hand, strong efforts are
being made worldwide to increase forest cover and implement
climate-smart forestry practices (Bastin et al., 2019; Di Sacco et al.,
2021). How these forest cover changes will affect future forest temper-
ature buffering should be a topic for future forestmicroclimate research.

We projected temperature buffering capacities of forests across the
globe under future climate change scenarios. Assuming no change in
forest composition, we predicted that forest buffering of Tmean and
Tmax will increase in the future (2060–2080), whereas buffering of
Tmin will be reduced due to changes in macroclimate conditions. Our
results indicate that the refugial capacity of cool and dense forest
7

might last longer than anticipated in a warming climate. This
knowledge has important implications for forest biodiversity
conservation. Forest managers and policymakers could, for example,
aim to optimize forest functioning and biodiversity goals by
identifying areas in which reducing or retaining canopy cover may
have larger impacts on the prevailing microclimate than anticipated
under future climate change (Wolf et al., 2021). The paired nature of
the data allowed us to model absolute temperature offsets across a
global extent with fair accuracy. Gridded microclimate products such
as ours, especially when paired with new, well-designed networks of
microclimate measurements (Lembrechts et al., 2020) serve ecological
and environmentalmodelers with amore scale-relevant set of products
for making predictions and drawing inference. At the regional and even
continental scale, novel high-resolution data on forest structure and
composition based on remote sensing imagery (e.g. GEDI LiDAR data)
are becoming available (De Frenne et al., 2021; Lembrechts et al.,
2019; Randin et al., 2020; Zellweger et al., 2018). Including thesemicro-
climate measurements and novel spatial map data (e.g. Haesen et al.,
2021; Lembrechts et al., 2020) in future models and mapping efforts
will increase accuracy of future predictions (Lembrechts et al., 2021a).
Our study illustrates that forest microclimates themselves are subject
to climate change, which will have important consequences for forest-
dwelling species and must hence not be neglected.
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